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PREFACE 

During the past four to five decades, considerable progress has been made in the 
area of soil dynamics. Soil dynamics courses have been added or expanded for 
graduate-level study in many universities. The knowledge gained from the inten
sive research conducted all over the world has gradually filtered into the actual 
planning, design, and construction process of various types of earth-supported 
and earth-retaining structures. Based on the findings of those research initiatives, 
this text is prepared for an introductory course in soil dynamics. While writing 
a textbook, all authors are tempted to include research of advanced studies to 
some degree. However, because the text is intended for an introductory course, 
it stresses the fundamental principles without becoming cluttered with too many 
details and alternatives. The text is divided into twelve chapters and an appendix. 

SI units are used throughout the text. 

New to this Edition 

Following are some of the revisions/additions to this edition. 

• In Chapter 1, "Introduction," a brief discussion on air blast loading has been
added.

• In Chapter 2 on "Fundamentals of Vibration" the discussion of vibration of
a mass-spring system with two degrees of freedom (Section 2.10) has been
revised for clarity. The application of the analysis of the theory related to
two-degree freedom system to the vibration of a drop hammer foundation
has been presented in an example problem.

• Chapter 3 on "Waves in Elastic Medium" has a section on viscoelastic waves
in a bar (Section 3.16).

• Chapter 4 on "Properties of Dynamically Loaded Soils" now has discussions
on bender element test for determination of shear wave velocity, recently
developed quasi-fixed base and free top type resonant column device (Werden
et al., 2013), correlations for shear wave velocity with standard penetration
number, correlations for shear modulus and damping ratio with cyclic shear
strain for gravelly soils (Rollins et al., 1998), correlations for shear modulus

and damping ratio of clayey soils which includes the effects of soil plasticity
and overconsolidation ratio (Hardin and Black, 1968; Hardin, 1978; Vucetic
and Dobry, 1991), and spectral analysis of surface wave (SASW) to obtain
the shear wave velocity profile at a test site.

• A detailed discussion on the improved methods for estimation of the dynamic
spring constant and dashpot coefficient (Dobry and Gazetas, 1986) has been
added to Chapter 5 on "Foundation Vibration."
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Preface 

• In Chapter 6 on "Dynamic Bearing Capacity of Shallow Foundations,"

the section on seismic bearing capacity (Section 6.6) has been expanded to
include a more detailed discussion of the solution of Richards et al. (1993).

Also included in this section are the solutions of Budhu and al-Karni (1993)
and Choudhury and Subba Rao (2005).

• Chapter 7 on "Earthquake and Ground Vibration" has now a more detailed
discussion on the moment magnitude scale of earthquakes and its relation

ship to the Richter scale.
• In Chapter 8 on "Lateral Earth Pressure on Retaining Walls," the section on

active earth pressure theory (Section 8 .11) has been expanded to include the
analysis of Shukla et al. (2009). The summary of the study of Soubra (2000)

on the passive earthquake coefficient has been included.
• A new section on simplified procedures for determining soil liquefaction

using in situ index has been added to Chapter 10 on "Liquefaction of Soil."
• New example problems and end-of-chapter problems have been added.

This text was originally published as Fundamentals of Soil Dynamics with

a 1983 copyright by Elsevier Science Publishing Company, New York. The first 
edition of Principles of Soil Dynamics was published by PWS-Kent Publishing 
Company, Boston, with a 1993 copyright, and the second edition was published 

by Cengage Learning, Stamford, Connecticut, with a 2011 copyright. The 
co-author of this third edition is Dr. Zhe Luo of the University of Akron, Ohio. 

INSTRUCTOR RESOURCE MATERIAL 

To access instructor resources, including a secure, downloadable Instructor's 
Solution Manual and Lecture Note PowerPoint Slides, please visit our Instructor 

Resource Center at http://sso.cengage/com. 
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Introduction 

Ill GENERAL INFORMATION

Soil mechanics is the branch of civil engineering that deals with the engineering 

properties and behavior of soil under stress. Since the publication of the book 
Erdbaumechanik aur Bodenphysikalischer Grund/age by Karl Terzaghi (1925), the

oretical and experimental studies in the area of soil mechanics have progressed at 
a very rapid pace. Most of these studies have been devoted to the determination 

of soil behavior under static load conditions, in a broader sense, although the 

term load includes both static and dynamic loads. Dynamic loads are imposed 

on soils and geotechnical structures by several sources, such as earthquakes, 

bomb blasts, operation of machinery, construction operations, mining, traffic, 

wind, and wave actions. It is well known that the stress-strain properties of a soil 
and its behavior depend upon several factors and can be different in many ways 

under dynamic loading conditions as compared to the case of static loading. Soil 

dynamics is the branch of soil mechanics that deals with the behavior of soil 

under dynamic load, including the analysis of the stability of earth-supported 
and earth-retaining structures. 

During the last 50 years, se veral factors, such as damage due to liquefac
tion of soil during earthquakes, stringent safety requirements for nuclear power 

plants, industrial advancements (for example, design of foundations for power 

generation equipment and other machinery), design and construction of off
shore structures, and defense requirements, have resulted in a rapid growth in the 

area of soil dynamics. 

ID NATURE AND TYPE OF DYNAMIC LOADING

ON SOILS 

The type of dynamic loading in soil or the foundation of a structure depends on 

the nature of the source producing it. Dynamic loads vary in their magnitude, 
direction, or position with time. More than one type of variation of forces may 
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1 I Introduction 

coexist. Periodic load is a special type of load that varies in magnitude with time 
and repeats itself at regular intervals-for example, operation of a reciprocating 
or a rotary machine. N onperiodic loads are those loads that do not show any 
periodicity-for example, wind loading on a building. Deterministic loads are 
those loads that can be specified as definite functions of time, irrespective of 
whether the time variation is regular or irregular, for example, the harmonic load 
imposed by unbalanced rotating machinery. Nondeterministic loads are those 
loads that can not be described as definite functions of time because of their 
inherent uncertainty in their magnitude and form of variation with time-for 
example, earthquake loads (Humar 2001). Cyclic loads are those loads which 
exhibit a degree of regularity both in its magnitude and frequency. Static loads 
are those loads that build up gradually over time, or with negligible dynamic 
effects. They are also known as monotonic loads. Stress reversals, rate effects, 
and dynamic effects are the important factors that distinguish cyclic loads from 
static loads (Reilly and Brown 1991). 

The operation of a reciprocating or a rotary machine typically produces a 
dynamic load pattern, as shown in Figure 1.1 a. This dynamic load is more or less 
sinusoidal in nature and may be idealized, as shown in Figure 1.1 b. 

The impact of a hammer on a foundation produces a transient loading con
dition in soil, as shown in Figure 1.2a. The load typically increases with time up 
to a maximum value at time t = t 1 and drops to zero after that. The case shown 
in Figure 1.2a is a single-pulse load. A typical loading pattern (vertical accelera
tion) due to a pile-driving operation is shown in Figure 1.2b. 

Dynamic loading associated with an earthquake is random in nature. A load 
that varies in a highly irregular fashion with time is sometimes referred to as a 
random load. Figure 1.3 shows the accelerogram of the El Centro, California, 
earthquake of May 18, 1940 (north-south component). 
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"O 
"' 

-
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..... 

s
"' 
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Time, t
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. .... 

s
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0 0 

(a) (b) 

Figure 1.1 (a) Typical load versus record for a low-speed rotary machine; 
(b) Sinusoidal idealization for (a)
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1.2 Nature and Type of Dynamic Loading on Soils 

__ __,.. ___ Time, t

Time, t

(a) (b) 

Figure 1.2 Typical loading diagrams: (a) transient loading due to single impact 
of a hammer; (b) vertical component of ground acceleration due to pile driving 
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Figure 1.3 Accelerogram of the El Centro, California, earthquake of May 18, 
1940 (N-S component) 

For consideration of land-based structures, earthquakes are the important 
source of dynamic loading on soils. This is due to the damage-causing potential 
of strong motion earthquakes and the fact that they represent an unpredictable 
and uncontrolled phenomenon in nature. The ground motion due to an earth
quake may lead to permanent settlement and tilting of footings and, thus, the 
structures supported by them. Soils may liquify, leading to buildings sinking and 
lighter structures such as septic tanks floating up (Prakash, 1981). The damage 
caused by an earthquake depends on the energy released at its source, as dis
cussed in Chapter 7. 
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1 I Introduction 

For offshore structures, the dynamic load due to storm waves generally represents 
the significant load. However, in some situations the most severe loading conditions 
may occur due to the combined action of storm waves and earthquakes loading. In 
some cases the offshore structure must be analyzed for the waves and earthquake 
load acting independently of each other (Puri and Das, 1989; Puri, 1990). 

The loadings represented in Figures 1.1, 1.2 and 1.3 are rather simplified pre
sentations of the actual loading conditions. For example, it is well known that 
earthquakes cause random motion in every direction. Also, pure dynamic loads 
do not occur in nature and are always a combination of static and dynamic loads. 
For example, in the case of a well-designed foundation supporting a machine, the 
dynamic load due to machine operation is a small fraction of the static weight of 
the foundation (Barkan, 1962). The loading conditions may be represented sche
matically by Figure 1.4. Thus in a real situation the loading conditions are complex. 
Most experimental studies have been conducted using simplified loading conditions. 

The displacement of the surface of the earth's crust due to a nuclear or sim
ilar type explosion is caused by cratering and is also due to the air blast loading. 

Immediately below the center of the explosion, a crater is formed due to the con
version of thermonuclear energy into mechanical energy. The center of the explo
sion is called ground zero. At larger distances from ground zero, displacement of 
the ground is caused by high air pressure initiated by the explosion. The nature 
of variation with distance of the high air pressure caused by a nuclear explosion 
is shown in Figure 1.5. The front of the air pressure moves radially outwards 

like a ring load with a near vertical front with a peak value of p0 and decays in 
an exponential manner. The pressure front moves with a velocity Vas shown in 
Figure 1.5. Under certain conditions, the overpressure becomes negative after 
some time when the blast pressure reaches some point on the ground surf ace at 
seismic velocities. Knowledge of stress wave propagation (Chapter 3) through the 

ground is important for the design of underground protective structures (e.g., US 
Air Force Special Weapons Center, 1962; Anderson, 1960; Borde, 1964; Heierli, 
1962; Hendron and Auld, 1967; Newmark , 1964; Wilson and Sibley, 1962). 

"O 
t,;j 

- --r ! ::
Static load due to weight of 

foundation and machine 

i 
Time, t

Load due to 

machine 

operation 

Figure 1.4 Schematic diagram showing loading on the soil below the 
foundation during machine operation 
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Ill IMPORTANCE OF SOIL DYNAMICS

The problems related to the dynamic loading of soils and earth structures fre
quently encountered by a geotechnical engineer include, but are not limited to 
the fallowing: 

1. Earthquake, ground vibration, and wave propagation through soils
2. Dynamic stress, deformation, and strength properties of soils
3. Dynamic earth pressure problem
4. Dynamic bearing capacity problems and design of shallow foundations
5. Pro bl ems related to soil liquefaction
6. Design of foundations for machinery and vibrating equipment
7. Design of embedded foundations and piles under dynamic loads
8. Stability of embankments under earthquake loading.

In order to arrive at rational analyses and design procedures for these prob
lems, one must have an insight into the behavior of soil under both static and 
dynamic loading conditions. For example, in designing a foundation to resist 
dynamic loading imposed by the operation of machinery or an external source, 
the engineer has to arrive at a special solution dictated by the local soil condi
tions and environmental factors. The foundation must be designed to satisfy the 
criteria for static loading and, in addition, must be safe for resisting the dynamic 
load. When designing for dynamic loading conditions, the geotechnical engineer 
requires answers to questions such as the following: 

1. How should failure be defined and what should be the failure criteria?
2. What is the relationship between applied loads and the significant parame

ters used in defining the failure criteria?
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1 I Introduction 

3. How can the significant parameters be identified and evaluated?

4. What will be an acceptable factor of safety, and will the factor of safety as
used for static design condition be enough to ensure satisfactory performance

or will some additional conditions need to be satisfied?

The problems relating to the vibration of soil and earth-supported and
earth-retaining structures have received increased attention of geotechnical engi

neers in recent years, and significant advances have been made in this direction. 

New theoretical procedures have been developed for computing the response of 

foundations, analysis of liquefaction potential of soils, and design of retaining 

walls and embankments. Improved field and laboratory methods for determin

ing dynamic behavior of soils and field measurements to evaluate the perf or

mance of prototypes deserve a special mention. In this text an attempt has been 
made to present the information available on some of the important problems in 

the field of soil dynamics. Gaps in the existing literature, if any, have also been 
pointed out. The importance of soil dynamics lies in providing safe, acceptable, 

and time-tested solutions to the problem of dynamic loading in soil, in spite of 

the fact that the information in some areas may be lacking and the actual loading 

condition may not be predictable, as in the case of the earthquake phenomenon. 

From the above, it can be seen that soil dynamics is an interdisciplinary area 

and in addition to traditional soil mechanics, requires a knowledge of theory of 

vibrations, principles of wave propagation, soil behavior under dynamic/cyclic 
conditions, numerical methods such as finite element methods, etc., in finding 

appropriate solutions for problems of practical interest. 
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Fundamentals of Vibration 

BJ INTRODUCTION

Satisfactory design of foundations for vibrating equipments is mostly based on 
displacement considerations. Displacement due to vibratory loading can be clas
sified under two major divisions: 

1. Cyclic displacement due to the elastic response of the soil-foundation system
to the vibrating loading

2. Permanent displacement due to compaction of soil below the foundation

In order to estimate the displacement due to the first loading condition listed
above, it is essential to know the nature of the unbalanced forces (usually sup
plied by the manufacturer of the machine) in a foundation such as shown in 
Figure 2.1. 

t Vertical 
Yawin� 

Rocking 

�dffilli 

Figure 2.1 Six modes of vibration for foundation 
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2.2 Fundamentals of Vibration 
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Note that a foundation can vibrate in any or all six possible modes. For ease 
of analysis, each mode is considered separately and design is carried out by con
sidering the displacement due to each mode separately. Approximate mathemati
cal models for computing the displacement of foundations under dynamic loads 
can be developed by treating soil as a viscoelastic material. This can be explained 
with the aid of Figure 2.2a, which shows a foundation subjected to a vibratory 
loading in the vertical direction. The parameters for the vibration of the f ounda
tion can be evaluated by treating the soil as equivalent to a spring and a dashpot 
which supports the foundation as shown in Figure 2.2b. This is usually referred 
to as a lumped parameter vibrating system. 

In order to solve the vibration problems of lumped parameter systems, one needs 
to know the fundamentals of structural dynamics. Therefore, a brief review of the 
mathematical solutions of simple vibration problems is presented. More detailed dis
cussion regarding other approaches to solving foundation vibration problems and 
evaluation of basic parameters such as the spring constant and damping coefficient 
are presented in Chapter 5. 

Ill FUNDAMENTALS OF VIBRATION

Following are some fundamental definitions that are essential in the development 
of the theories of vibration. 

Free Vibration: Vibration of a system under the action of forces inherent in 
the system itself and in the absence of externally applied forces. 

The response of a system is called free vibration when it is disturbed and then 
left free to vibrate about some mean position. 

Forced Vibration: Vibration of a system caused by an external force. 
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2 I Fundamentals of Vibration 

Vibrations that result from regular (rotating or pulsating machinery) and irregu
lar (chemical process plant) exciting agencies are also called as forced vibrations. 

Degree of Freedom: The number of independent coordinates required to 
describe the solution of a vibrating system. 

For example, the position of the mass min Figure 2.3a can be described by a 
single coordinate z, so it is a single degree of freedom system. In Figure 2.3b, two 
coordinates (z1 and z2) are necessary to describe the motion of the system; hence
this system has two degrees of freedom. Similarly, in Figure 2.3c, two coordinates 
(z and 8) are necessary, and the number of degrees of freedom is two. A rigid 
body has total six degrees of freedom: three rotational and three translational. 

To understand the mathematical models that will be frequently used in analy
sis of machine foundations, a thorough understanding of physics as well as math
ematics of a single degree of freedom system is required and is explained in the 
following sections. Once the mathematics as well as physics of a single degree of 
freedom system is clear, it is easy to extend this to multi-degree of freedom sys
tems as well as modal analysis of complicated physical systems. In addition, the 
concept of response spectrum, often used by structural engineers, is also based 
on a single degree of freedom system. A proper selection of vibration measuring 
instruments, design of vibration isolation as well as force isolation also require a 
good understanding of concepts such as natural frequency, damping ratio, etc., 
that can be easily understood from one degree of freedoms systems. 

T 
Mass=m 

T 
z 

T 

(a) 

Mass=m1

Mass=m2

(b) 

·-t-·-·-·-·-·-·-· 
B
T. --

z '\---

__ + ___ _ 

(c) 

Figure 2.3 Degree of freedom for vibrating system 
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2.3 Free Vibration of a Spring-Mass System 

System with Single Degree of Freedom 

Ill FREE VIBRATION OF A SPRING-MASS SYSTEM

Figure 2.4 shows a foundation resting on a spring. Let the spring represent the 
elastic properties of the soil. The load W represents the weight of the foundation 
plus that which comes from the machinery supported by the foundation. 

If the area of the foundation is equal to A, the intensity of load transmitted 
to the subgrade can be given by 

w 
q=-

A 

Due to the load W, a static deflection Zs will develop. By definition, 

w 
k=-

where 

Zs 

k = spring constant for the elastic support. 

... · ·:·.· ... · :.· .. . .  

· . ·
. ·-

. . . . . . . . . . .

Foundation weight= W 

,.w 

�w+kz 

W .. 
-z
g

Figure 2.4 Free vibration of a mass-spring system 

1 
-Z

+Z

(2.1) 

(2.2) 
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2 I Fundamentals of Vibration 

The coefficient of subgrade reaction ks can be given by 

k =!L 
Zs 

(2.3) 

If the foundation is disturbed from its static equilibrium position, the sys
tem will vibrate. The equation of motion of the foundation when it has been 
disturbed through a distance z can be written from Newton's second law of 
motion as 

or 

where 

(;}+kz = O

g = acceleration due to gravity 
z = d2zldt2

t = time 
m = mass = W/g 

In order to solve Eq. (2.4), let 

where A 1 and A2 
= constants 

OJn = undamped natural circular frequency 

Substitution of Eq. (2.5) into Eq. (2.4) yields 

or 

The unit of OJn is in radians per second (rad/s). Hence, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

In order to determine the values of A 1 and A2 , one must substitute the proper 
boundary conditions. At time t = 0, let 

Displacement z = z0
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2.3 Free Vibration of a Spring-Mass System 

and 

V 1 
. dz . e oc1ty = - = z = Vo 

dt 

Substituting the first boundary condition in Eq. (2. 7), 

zo = Ai 

Again, from Eq. (2. 7) 

Substituting the second boundary condition in Eq. (2.9) 

or 

Combination of Eqs. (2. 7), (2.8), and (2.10) gives 

z = zocos( lt)+ Fmsin( lt) 
Now let 

z0 = Z cos a

and 
Vo 

Z
. JkTm = s1na 

m

Substitution of Eqs. (2.12) and (2.13) into Eq. (2.11) yields 

lz = Z cos(mnt -a)I 

where 

a = tan- 1 ( Vo J
zo�klm 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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2 I Fundamentals of Vibration 
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Figure 2.5 Plot of displacement, velocity, and acceleration for the free
vibration of a mass-spring system 
(Note: Velocity leads displacement by rc/2 rad: acceleration leads velocity by rc/2 rad.) 

z2 +(m)v2 
0 k 0 

OJ,zl 

.... _

(2.16)

The relation for the displacement of the foundation given by Eq. (2.14) can
be represented graphically as shown in Figure 2.5. 

At time

t=O ' z = Zcos (-a) =Zcosa

a 
z = z cos ( ro. :. -a) =Z t---- ' 

Wn 

1 1
-1t+a -1t+a 

t = 2 z =Zcos Wn 
2 -a =0

Wn Wn 

1t+a ( n+a ) =-Zt= Z = Z COS Wn 

an 

-a 
Wn 
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2.3 Free Vibration of a Spring-Mass System 

3 
-n+a

z = Z COS Wn 
2 -a = 0 

Wn

( 2n + a JZ = Z COS 

OJn Wn

- a = Z 

From Figure 2.5, it can be seen that the nature of displacement of the foun
dation is sinusoidal. The magnitude of maximum displacement is equal to Z.

This is usually referred to as the single amplitude. The peak-to-peak displace
ment amplitude is equal to 2Z, which is sometimes referred to as the double 
amplitude. The time required for the motion to repeat itself is called the period 
of the vibration. Note that in Figure 2.5 the motion is repeating itself at points 
A, B, and C. The period Tof this motion can therefore be given by 

� 
(2.17) 

The frequency of oscillation I is defined as the number of cycles in unit 
time, or 

k=f =�I (2.18) 

It has been shown in Eq. (2.6) that, for this system, Wn = �klm. Thus, 

(2.19) 

The term In is generally referred to as the undamped natural frequency. Since 
k = Wlzs, and m = Wig, Eq. (2.19) can also be expressed as 

In =(-1 ) {g27t v-z 
(2.20) 

Table 2.1 gives values of In for various values of Zs

The variation of the velocity and acceleration of the motion with time can 
also be represented graphically. From Eq.(2.14), the expressions for the velocity 
and the acceleration can be obtained as 

i =-(Zro.)sin(ro.t - a)= Zco. cos( co.t - a+� 1t) (2.21) 

and 

z =-Zm; cos(mnt-a) = Zm; cos(mnt-a + n) (2.22) 
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2 I Fundamentals of Vibration 

Table 2.1 Undamped natural frequencies 

Zs 
Undamped natural frequency 

(mm) (Hz) 

0.02 111 

0.05 71 

0.10 50 

0.20 35 

0.50 22 

1.0 16 

2 11 

5 7 

10 5 

The variation of the velocity and acceleration of the foundations is also 
shown in Figure 2.5. 

EXAMPLE 2.1 

A mass is supported by a spring. The static deflection of the spring due to the 
mass is 0.381mm. Find the natural frequency vibration. 

SOLUTION: 

From Eq. (2.20), 

f, =(-1) {g
n 21t \J-Z 

g = 9.81 rn/s2
, Zs = 0.381 mm = 0.000381 m. 

So, 

fn =(2�)
9·81 

= 25.54 Hz 
0.000381 
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2.4 Forced Vibration of a Spring-Mass System 

EXAMPLE 2.2 

For a machine foundation, given weight of the foundation = 45 kN and
spring constant= 104 kN/m, determine 

a. natural frequency of vibration, and
b. period of oscillation 

SOLUTION: 

a. /. = 2
� l = 2

�

b. From Eq. (2.18),

104 

= 
7.43 Hz

( 45/9.81)

1 1 T=-=-=0.135s
fn 7.43 

Bl FORCED VIBRATION OF A SPRING-MASS SYSTEM

Figure 2.6 shows a foundation that has been idealized to a simple spring-mass
system. Weight W is equal to the weight of the foundation itself and that sup
ported by it; the spring constant is k. This foundation is being subjected to an
alternating force Q = Q0 sin(cot + {3). This type of problem is generally encoun
tered with foundations supporting reciprocating engines, and so on. 

The equation of motion for this problem can be given by 

mz + kz = Q0 sin(cot + /3) (2.23)

Let z = A1 sin(cot + /3) be a particular solution to Eq. (2.23) (A1 = const). Substi
tution of this into Eq. (2.23) gives 

-co2mA 1 sin(cot + /3) + kA1 sin(cot + /3) = Q0 sin(cot + /3)

Ai= Qolm
(k/m) - CO

2

Hence the particular solution to Eq. (2.23) is of the form

z = A1 sin( cot+ /3) = Qo Im sin( cot+ {3)
(k/m)- co2 

The complementary solution of Eq. (2.23) must satisfy

mz+kz = O 

(2.24)

(2.25)
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2 I Fundamentals of Vibration 

Q = Q0 sin ( mt + /J) 

Weight= W W 

Mass=m=
g 

k 

' ... ·� 

Figure 2.6 Forced vibration of mass-spring system title 

As shown in the preceding section, the solution to this equation may be given as 

(2.26) 

where co. = J! 
A2 ,A3 = const 

Hence, the general solution of Eq. (2.23) is obtained by adding Eqs. (2.25) 
and (2.26), or 

Z = A1 sin(mt + /3) + A2 COS<Ont + A3 sinmn
t

Now, let the boundary conditions be as follows: 
At time t = 0, 

From Eqs. (2.27) and (2.28), 

or 

Z = Zo = 0 

dz 1 . 0- = ve oc1ty = v0 = 
dt 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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2.4 Forced Vibration of a Spring-Mass System 

Again, from Eq. (2.27),

dz= A1 rocos(rot + /3) - A2 Wn sin Wnt + A3 Wn cos Wnt 
dt 

Substituting the boundary condition given by Eq. (2.29) in the preceding equa
tion gives 

or

(2.31)

Combining Eqs. (2.27), (2.30), and (2.31),

z = A 1 [ sin( cot + /3) -cos( cot) sin /3 -( :
n 

}in( cont) cos /3] (2.32)

For a real system, the last two terms inside the brackets in Eq. (2.32) will
vanish due to damping, leaving the only term for steady-state solution. 

or

If the forcing function is in phase with the vibratory system (i.e., f3 = 0), then

z = A 1 (sincot -( :
n 

)sin cont)

Qolm ( . OJ . )
= ----- Sln OJt - -Sln Wnt 

(k/m) - OJ2 
Wn 

Qol k ( . OJ • )
Z =

2 2 
SlnOJt - -SlnOJnt 

1-(ro Iron ) Wn 

(2.33)

However, Q0 I k = Zs = static deflection. If one lets 1/(1- ro2 /ro�) be equal to
M [equal to the magnification factor or A 1 I (Q0 I k)], Eq. (2.33) reads as 

z = z,M [ sin cot -( :n }in cont ] (2.34)

The nature of variation of the magnification factor M with ro/ Wn is shown
in Figure 2.7a. Note that the magnification factor goes to infinity when
mlwn =I.This is called the resonance condition. For the resonance condition, the
right-hand side of Eq. (2.34) yields 0/0. 
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2 I Fundamentals of Vibration 

or 

Thus, applying L'Hopital's rule, 

. _ 
l
(dldm)[sinmt-(mlmn)sinmnt]

lhm(z)- Zs 
2 2 

(i)-Hl)n ( d I dm )(1 - m I Wn) 

The velocity at resonance condition can be obtained from Eq. (2.35) as 

(2.35) 

(2.36) 

Since the velocity is equal to zero at the point where the displacement is at 
maximum, for maximum displacement 

or 

(2.37) 

where n is an integer. 
For the condition given by Eq. (2.37), the displacement equation (2.35) yields 

where Z
max 

= maximum displacement . 

(2.38) 

It may be noted that when n tends to oo, lzmax l is also infinite, which points out 
the danger to the foundation. The nature of variation of z/ Zs versus time for the 
resonance condition is shown in Figure 2. 7b. 

Maximum Force on Foundation Subgrade 

The maximum and minimum force on the foundation subgrade will occur at the 
time when the amplitude is maximum, i.e., when velocity is equal to zero. This 
can be derived from displacement Eq. (2.33): 

Qo 1 ( . m . 
J 

z = -( 2 2) s1nmt--s1nmnt
k l-m fmn Wn 
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2.4 Forced Vibration of a Spring-Mass System 
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Figure 2.7 Forced vibration of a mass-spring system: (a) variation of 
magnification factor with ro/ ron; (b) vibration of displacement with time at 
resonance ( OJ = OJ n) 

Thus, the velocity at any time is 

. Q 1
Z = -

( 2 2) (OJ COSOJt - OJ COSOJnt)
k 1- OJ Iron 
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2 I Fundamentals of Vibration 

For maximum deflection, z = 0, or 

m COS mt -m COS mnt = 0 

Since w is not equal to zero,

thus, 

1 2n1t 
(2.39) -(m -m)t = nn· t= 

2 
n ' mn -(1

or 

1 2mn 
(2.40) - (mn +m)t=mn; t = 

2 mn + m 

where m and n = l, 2, 3, .... 
Equation (2.39) is not relevant (beating phenomenon). Substituting Eq. 

(2.40) into Eq. (2. 33) and simplifying it further, 

In order to determine the maximum dynamic force, the maximum value of 
Zmax given in Eq. (2.41) is required: 

Hence, 

_ (Qol k) 
Z max(max) - l I -m mn

_ _ k(Qol k) _ Q0

Fdynam(max) - k[ Zmax(max)] - l I 
-

l I 
- m mn - m mn

Hence, the total force on the subgrade will vary between the limits 

W-
Qo andW+ Qo

1 -ml mn
l -ml mn

(2.42) 

(2.4 3) 
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2.5 Free Vibration with Viscous Damping 

EXAMPLE 2.3 

A machine foundation can be idealized as a mass-spring system. This founda
tion can be subjected to a force that can be given as Q (kN) = 35.6 sin mt.
Given f = 13.33 Hz 

Weight of the machine+ foundation = 178 kN 
Spring constant = 70,000 kN/m 

Determine the maximum and minimum force transmitted to the subgrade. 

SOLUTION: 

But 

k 70000 X 103

Natural angular frequency = mn = 
m 

= 
178 X 103 /9.81 

= 62.11 rad/s 

Qo 
Fdynam = ---

1-m/mn

m = 2rcf = 2rc X 13.33 = 83.75 rad/s 

Thus 

IF I =
35

·
6 

= 102.18 kN dynam 
1- (83.75/62.11)

Maximum force on the sub grade = 178 + 102.18 = 280.18 kN

Minimum force on the sub grade = 178 - 102.18 = 75.82 kN

Ill FREE VIBRATION WITH VISCOUS DAMPING

In the case of undamped free vibration as explained in Section 2.3, vibration 
would continue once the system has been set in motion. However, in practical 
cases, all vibrations undergo a gradual decrease of amplitude with time. This 
characteristic of vibration is ref erred to as damping. Figure 2.2b shows a founda
tion supported by a spring and a dashpot. The dashpot represents the damping 
characteristic of the soil. The dashpot coefficient is equal to c. For free vibration 
of the foundation (i.e., the force Q = Q0 sin mt on the foundation is zero), the dif
ferential equation of motion can be given by 

mz+ci+kz = 0 (2.44) 

Let z = Ae'1 be a solution to Eq. (2.44), where A is a constant. Substitution 
of this into Eq. (2.44) yields 

mAr 2e'1 
+ cAre'1 

+ kAe'1 
= 0
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2 I Fundamentals of Vibration 

or 

2 
(C) k 

r +
m

r+
m

=O (2.45) 

The solutions to Eq. (2.45) can be given as 

(2.46) 

There are three general conditions that may be developed from Eq. (2.46): 

1. If c/2m > .Jk!m, both roots of Eq. (2.45) are real and negative. This is referred
to as an overdamped case.

2. If c/2m = .Jk!m, r = -c/2m. This is called the critical damping case.
Thus, for this case,

(2.47a) 

3. If c/2m < .Jk!m, the roots of Eq. (2.45) are complex:

r
=

- 2� +j�� 4�2

This is referred to as a case of underdamping. 

It is possible now to define a damping ratio D, which can be expressed as

Using the damping ratio, Eq. (2.46) can be rewritten as 

where 

r = _ ___£_ + � C k = W, (-D + .JD2 -1) 
2m 4m2 m 

For the overdamped condition ( D > l ),

r = Wn ( -D + .J D2 
- l) 

(2.47b) 

(2.48) 

For this condition, the equation for displacement (i.e., z = Ae't) may be
written as 
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2.5 Free Vibration with Viscous Damping 

where A 1 and A2 are two constants. Now, let 

and 

or 

1 
A 1 = -(A 3 + A4) (2.50) 2 

1 
A2 = -(A 3 -A 4 ) (2.51) 2 

Substitution of Eqs. (2.50) and (2.51) into Eq. (2.49) and rearrangement gives 

z = e-nw., g A3 
[ exp( w.'1D2 

-1 t) + exp(-ro.�D2 
-1 t)]

+ � A4[ exp(ro.�D2 
-1 t) + exp(-ro.'1D2 

-1 t )]

(2.52) 

Equation (2. 52) shows that the system which is overdamped will not oscillate 
at all . The variation of z with time will take the form shown in Figure 2.8a. 

The constants A 3 and A 4 in Eq. (2.52) can be evaluated by knowing the initial 
conditions.Let,attimet = O,displacement = z = z0andvelocity = dzldt = v0 .From
Eq. (2. 52) and the first boundary condition, 

or 

Again, from Eq. (2.52) and the second boundary condition, 

� =v0 =(ro.�D2 
-1 A4 )- D w.A,

A 
_ Vo + DOJnA 3

4 -0Jn �D2 -l
Vo+ DOJnZo 
OJn �D2 

-1

(2.53) 

(2.54) 

Substituting Eqs. (2.53) and (2.54) into Eq. (2.52) 

z = e-nw., [ z0 cosh(ro.�D2 -1 t) + :.J���z; sinh(JD2 -1 t)] (2.55) 

For a critically damped condition (D = 1), from Eq. (2.48),

r = -OJn (2.56) 
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2 I Fundamentals of Vibration 

D> l
Overdamped system

(a) Time, t

D= l 
Critically damped system 

Time, t 

(b) 

Time, t

Underdamped system 

(c) 

Figure 2.8 Free vibration of a mass-spring-dashpot system: (a) overdamped 
case; (b) critically damped case; (c) underdamped case 

Given this condition, the equation for displacement (z = Ae rt ) may be written as 

(2.57) 

where A5 and A6 are two constants. This is similar to the case of the overdamped 
system except for the fact that the sign of z changes only once. This is shown in 
Figure 2.8b. 
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2.5 Free Vibration with Viscous Damping 

The values of As and A6 in Eq. (2.57) can be determined by using the initial 
conditions of vibration. Let, at time t = 0, 

dz Z = Zo , - =vo

dt 

From the first of the preceding two conditions and Eq. (2.57), 

z = Zo = As 

or 

Similarly, from the second condition and Eq. (2.57) 

dz 

dt 
= Vo = - WnAs + A6 = -mnzo + A6 

A combination of Eqs. (2.57)- (2.59) yields 

I z = [ Zo + ( Vo + WnZo )t]e-COnt I 

Finally, for the underdamped condition (D < 1), 

r = Wn ( -D + i�l - D2 )

(2.58) 

(2.59) 

(2.60) 

Thus, the general form of the equation for the displacement (z = Ae'') can 
be expressed as 

(2.61) 

where A 7 and A8 are two constants. 

Equation (2.61) can be simplified to the form 

z = e-Dcont [ A9 cos(mn�l-D2 t)+A10 sin(mn�l-D2 t)]
where A9 and A10 are two constants. 

(2.62) 

The values of the constants A9 and A10 in Eq. (2.62) can be determined by 
using the following initial conditions of vibration. Let, at time t = 0, 

z = z0 and dt 
-=vo

dz 

The final equation with theses boundary conditions will be of the form 

z = e-Dw,, [ z0 cos( mn�l - D2 t) + �n��-
m
;�o

· sin( mn�l - D2 t)] (2.63)
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2 I Fundamentals of Vibration 

Equation (2.63) can further be simplified as 

where 

z = Z cos(mdt - a) 

z = e -Dmnt Z6 + ( Vo + DOJnZo

J
2 

Wn�l-D2

md = damped natural circular frequency= Wn�l - D2

(2.64) 

(2.65) 

(2.66) 

(2.67) 

The effect of damping is to decrease gradually the amplitude of vibration 
with time. In order to evaluate the magnitude of decrease of the amplitude of 
vibration with time, let Zn and Zn+l be the two successive positive or negative 
maximum values of displacement at times tn and tn+l from the start of the vibra
tion as shown in Figure 2.8c. From Eq. (2.65), 

Zn+I _ exp(-Dmntn+1) _ [- ( _ )]-
( ) 

- exp Dmn tn + 1 tn 
Zn exp -Dmntn 

However, tn + 1 - tn is the period of vibration T,

Thus, combining Eqs. (2.68) and (2.69), 

c5 = In ( 
Zn J = 2 rcD

Zn+1 �1- D2

The term 8 is called the logarithmic decrement.

If the damping ratio D is small, Eq. (2. 70) can be approximated as 

8 = In ( 
Zn J = 2 rcD

Zn+1 

EXAMPLE 2.4 

For a machine foundation, given weight = 60 kN, 
spring constant= 1 1,000 kN/m, and c = 200 kN-s/m, determine 

(2.68) 

(2.69) 

(2.70) 

(2.71 )

a. whether the system is overdamped, underdamped, or critically damped,
b. the logarithmic decrement, and
c. the ratio of two successive amplitudes.
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2.5 Free Vibration with Viscous Damping 

SOLUTION: 

a. From Eq. (2.47a),

Cc =2)/cm =2 11,ooo(�J =518.76kN.s/m
9.81 

C 200 - = D = -- = 0.386 < 1
Cc 518.76 

Hence , the system is underdamped.

b. From Eq. (2. 70),

8 = 2rcD
�l-D2 

2rc(0.386) = 2_63
�1-(0.386)2 

c. Again , from Eq. (2. 70),

Zn =es= e2.63 = 13.87 
Zn+1 

EXAMPLE 2.5 

For Example 2.4 , determine the damped natural frequency. 

SOLUTION: 

From Eq. (2.67), 

where 

Thus, 

Id
= damped natural frequency. 

In = 

_l {k = _l 11,000 X 9.81 = 6_75 Hz
2rc �-;;; 2rc 60 

Id
= ( �1-(0.386)2 )(6.75) = 6.23 Hz 
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2 I Fundamentals of Vibration 

1111 STEADY-STATE FORCED VIBRATION

WITH VISCOUS DAMPING 

Figure 2.2b shows the case of a foundation resting on a soil that can be approx
imated to an equivalent spring and dashpot. This foundation is being subjected 
to a sinusoidally varying force Q = Q0 sin mt. The differential equation of motion 
for this system can be given be 

mz + kz + ct = Q0 sin mt (2.72) 

The transient part of the vibration is damped out quickly; so, considering the 
particular solution for Eq. (2. 72) for the steady-state motion, let 

z = A 1 sin mt+ A 2 cos mt 

where A 1 and A2 are two constants. 
Substituting Eq. (2. 73) into Eq. (2. 72), 

m(-A 1m 2 sin mt - A 2m 2 cos mt)+ k( A 1 sin mt+ A 2 cos mt) 

+ c(A 1mcos mt - A 2m sin mt)= Q 0 sin mt

Collecting sine and cosine functions in Eq. (2.74) separately, 

(-mA 1m 2 
+ kA 1 - cA2m)sin mt= Q 0 sin mt

From Eq. (2.75a), 

And from Eq. (2.75b), 

(2.73) 

(2.74) 

(2.75a) 

(2.75b) 

(2.76) 

(2.77) 

Solution of Eqs. (2.76) and (2.77) will give the following relations for the con
stants A 1 and A2 :

Ai= 
(k- mm 2 )Qo 

(k- mm 2 )2 

+ c2m 2

(2.78) 
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2.6 Steady-State Forced Vibration with Viscous Damping 

and 

A _

-cmQo
2-

(k -mm2 )
2 

+ c2m2

(2.79) 

By substituting Eqs. (2.78) and (2.79) into Eq. (2.73) and simplifying, one 
can obtain 

where 

and 

I z =Zcos(mt +a) I 

a= tan- 1 
-- = tan-1 

---- = tan- 1 ( A 1

J (k-mm2 ) [1-(m2 /m�)] 
A2 cm 2D(mlmn) 

(2.80) 

(2.81) 

(2.82) 

where OJn = .Jk!m is the undamped natural frequency and D is the damping ratio. 
Equation (2.82) can be plotted in a nondimensional form as Z/(Q0 / k) against 

mlmn. This is shown in Figure 2.9. In this figure, note that the maximum values 
of Z/(Q0/ k) do not occur at m = mn, as occurs in the case of forced vibration of 
a spring-mass system (Section 2.4). Mathematically, this can be shown as follows: 
From Eq. (2.82), 

z 

(Qolk) 

For maximum value of Z/(Q0/k), 

a[ Z/(Q0/ k )] 
= O a( mlmn)

From Eqs. (2.83) and (2.84), 

or 

!!!_(1- m: J- 2n2 (!!!_J = o

Wn Wn Wn 

m = Wn .Jl - 2D2

(2.83) 

(2.84) 

(2.85) 
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Figure 2.9 Plot of Z/(Q0
/ k) against wlm

n 

Hence, 

(2.86) 

where f m is the frequency at maximum amplitude (the resonant frequency for 
vibration with damping), and fn is the natural frequency= (l/21t))k!m. Hence,
the amplitude of vibration at resonance can be obtained by substituting Eq. 
(2.85) into Eq. (2.82): 

z = Qo 1
res k �[ 1 - ( 1 - 2D2) J

2 

+ 4D2 ( 1 - 2D2)
(2.87) 
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2.6 Steady-State Forced Vibration with Viscous Damping 

Maximum Dynamic Force Transmitted to the Subgrade 

For vibrating foundations, it is sometimes necessary to determine the dynamic 
force transmitted to the foundation. This can be given by summing the spring 
force and the damping force caused by relative motion between mass and dash
pot; that is, 

Fd
ynam = k Z + C i 

From Eq. (2.80), 

z = Z cos ( cot + a)

therefore, 

i = -coZ sin ( cot + a) 

and 

Fctynam = kZ cos (cot+ a)- ccoZ sin (co+ a)

If one lets 

kZ=Acos</) and ccoZ=Asin¢, 

Then Eq. (2.88) can be written as 

Fctynam = A cos( cot + </) + a)

where 

(2.88a) 

(2.88b) 

(2.89) 

(2.90) 

Hence, the magnitude of maximum dynamic force will be equal to Z � k 2 + ( cm )2 •

EXAMPLE 2.6 

A machine and its foundation weigh 140 kN. The spring constant and the 
damping ratio of the soil supporting the soil may be taken as 12 X 104 kN/m 
and 0.2, respectively. Forced vibration of the foundation is caused by a force 
that can be expressed as 

Q(kN) = Q0 sin cot

Q0 = 46 kN, co = 157 rad/s 

Determine 

a. the undamped natural frequency of the foundation,
b. amplitude of motion, and
c. maximum dynamic force transmitted to the subgrade.
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2 I Fundamentals of Vibration 

SOLUTION: 

a. fn = -2
1 

[k = 2
1 

:�0�;�: = 14.59 Hz 
7t �-;;; 

b. From Eq. (2.82),

z = 

Qol k 

�( 1-m2 /m�)
2 +4D2 (m2 /m�)

Wn = 21tfn = 21t(14.59) = 91.67 rad/s 

z = 46/(1 2 X 104 )

�[1-(157/ 91.67)2 ]2 +4(0. 2)2 X (157/ 91.67)2 

= 3·833 X l0-4 

= 0.000 187 m = 0.187 mm
�3. 73 7 + 0.469 

c. From Eq. (2. 90), the dynamic force transmitted to the sub grade

A= Z�k2 
+ (cw)2 

From Eq. (2.4 7b), 

c = 2D.Jkiii, = 2(0. 2) (1 2Xl04 )( 140
J =523.46kN.s/m

9.81 

Thus, the maximum dynamic force transmitted to the sub grade is 

F°aynam = 0.000 187�(1 2 X 104 )2 + (523.46 X 157)2 = 27.20 kN

Ell ROTATING-MASS-TYPE EXCITATION

In many cases of foundation equipment, vertical vibration of foundation is pro
duced by counter-rotating masses as sho wn in Figure 2. 1 Oa. Since horizontal forces 
on the foundation at any instant cancel, the net vibrating force on the foundation 
can be determined to be equal to 2meem2 sinwt (where me =mass of each counter
rotating element, e =eccentricity, and OJ = angular frequency of the masses). In 
such cases, the equation of motion with viscous damping [Eq. (2. 7 2)] can be 
modified to the form 

mz + kz + cz = Q0 sinmt (2. 91) 
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2.7 Rotating-Mass-Type Excitation 

(2.92) 

(2.93) 

and m is the mass of the foundation, including 2me. 
Equations (2.91)-(2.93) can be similarly solved by the procedure presented in 

Section 2.6. 
The solution for displacement may be given as 

lz = Z cos(mt + a)I (2.94) 

where 

z = (Ulm)(mlmn)
2

�(l-m2lm;)2 +4D2 (m2lm;) 
(2.95) 

_ 
[
1-(m2lm;)

] a = tan 1

2D(mlmn) 
(2.96) 

In Section 2.6a, a nondimensional plot for the amplitude of vibration was 
given in Figure 2.9 [i.e., Z(Q0 I k) versus mlmn]. This was for a vibration produced 
by a sinusoidal forcing function (Q0 = const). For a rotating-mass type of exci
tation, a similar type of non-dimensional plot for the amplitude of vibration can 
also be prepared. This is shown in Figure 2.1 Ob, which is a plot of ZI( Ulm) versus 
wlmn. Also proceeding in the same manner [as in Eq. (2.86) for the case where 
Q = const], the angular resonant frequency for rotating-mass-type excitation can 
be obtained as 

or 

Wn 
(1) = ----;====

�1-2n2

fm =damped resonant frequency=
� 

f,, 
1-2n2

(2.97) 

(2.98) 

The amplitude at damped resonant frequency can be given [similar to 
Eq. (2.87)] as 

Z =
Ulm 

res 2D�l- D2 
(2.99) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



2 I Fundamentals of Vibration 

(Ulm) 

1 

m
e 

= rotating mass 
e = eccentricity 

(a) 

o-=------_.__ ______ _,_ ______ ___._ ______ __, 

0.5 1.0 1.5 2.0 

(b) 

Figure 2.10 (a) Rotating mass-type excitation; (b) plot of Zl(U/m) against 

OJf OJn 
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2.7 Rotating-Mass-Type Excitation 

EXAMPLE 2.7 

A machine and its foundation weigh 100 kN. Given: 
Spring constant of the soil = 10 X 104 kN/m Damping ratio = 0.18 

Forced vibration of the foundation is caused by rotating-mass-type of excitation. Given: 

Determine: 

me 
= 2.5 kg e = 0.075 m 

ro = 150 rad/s 
a. Undamped natural frequency of the foundationb. Amplitude of motionc. Amplitude of damped resonant frequency
SOLUTION: 

a. In 

= -1 [k = -1 
21t�;; 21t 

10 X 104

( 100)
= 15.76 cps 

9.81 
b. From Eq. (2.92)

Q0 = 2m
e 

e ro 2 = (2)(2.5)(0.075)(150)2 = 8438 N � 8.44 kN
From Eq. (2.95) 

(�)(:J z = -----;::::======== 

(1-:;J +4D2 (:;)

U = 2mee = (2)(2.5)(0.075) = 0.375 
m

= 

100 x 1000 � 10 194 k 9.81 ' g 
Wn = 2nfn = (2)(n)(15.76) = 99.02 rad/s 

( 0.375 )( 150 )
2

10,194 99.02 
Z=-----;::::================ 

[1-( 150 )2 ]2 + (4)(0.18)(0.18)'( 150 )2
99.02 99.02 

= 0.0000428 m = 0.0428 mm 
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2 I Fundamentals of Vibration 

c. From Eq. (2.99)

U 0.375 

z = m 
= 

lO, l94
= 0.000104 = 0.104 mm 

2D�l-D2 (2)(0.18)�1-(0.18)2

DI DETERMINATION OF DAMPING RATIO

The damping ratio D can be determined from free and forced vibration tests on a 
system. In a free vibration test, the system is displaced from its equilibrium posi
tion, after which the amplitudes of displacement are recorded with time. Now, 
from Eq. (2.70) 

If D is small, then 

It can also be shown that 

c5 = In ( 
Zn

J = 2 rcD 
Zn+1 �1- D2

8 = In ( 
z n

J = 2 rcD 
Zn+1 

Zo n8 =In-= 2rcnD
Zn

where Zn
= the peak amplitude of the nth cycle. 

Thus, 

1 Zo D=-In-
2rcn Zn

(2.100) 

(2.101) 

(2.102) 

In a forced vibration test, the following procedure can be used to determine 
the damping ratio. 

1. Vibrate the system with a constant force type of excitation and obtain a plot
of amplitude (Z) with frequency (/), as shown in Figure 2.11.

2. Determine Zres from Figure 2.11.
3. Calculate 0. 707 Zres · Obtain the frequencies Ji and h. that correspond to

0.707Zres •
4. From Eq. (2.87)

z -(Qo)( 1 
Jres -

k 2D�l- D2 
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2.8 Determination of Damping Ratio 

I 

I 

I 

I 

-----___ _J_ ----- -�-0.707Zres 

I 

I I 

I I 

:11 
I 

1 fn : fz 

Frequency,! 

Figure 2.11 Bandwidth method of determination of damping ratio from
forced vibration test 

However, if D is small,

z -(Qo)( 1 )res - k 
2D 

Again, from Eq. (2.83)

Z = 0.707 Zres =
Qof k

�[1-(111.)'J +4D(f!tS 
Combining Eqs. (2.103) and (2.104),

0.707 1

However,

2D 

- �[1-(f/JSJ +4D2 (/ffn )
2

(;. J

2

-2(f J\1-2D2 )+(1-8D2 )=0

(LJ
2 

=(I - 2n2 ) + 2nJ1+ n2

fn 1 2' 

(J.]
2 

-(2J
2 

=4DJI+D2 �4D 

(2.103)

(2.104)

(2.105)
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2 I Fundamentals of Vibration 

But 

So 

(2.106) 

Now, combining Eqs. (2.105) and (2.106) 

4D=2(/i
;.

Ji)

or 

D= _!_(fz - Ji) 
2 In 

(2.107) 

Knowing the resonant frequency to be approximately equal to In
, the magnitude 

of D can be calculated. This is ref erred to as the bandwidth method. 

Ill VIBRATION-MEASURING INSTRUMENT

Based on the theories of vibration presented in the preceding sections, it is 
now possible to study the principles of a vibration-measuring instrument, as 
shown in Figure 2.12. The instrument consists of a spring-mass-dashpot sys
tem. It is mounted on a vibrating base. The relative motion of the mass m with 
respect to the vibrating base is monitored. 

Let the motion of the base be given as 

z' = Z'sin mt 

Neglecting the transients let the absolute motion of the mass be given as 

z" = Z" sin mt 

So, the equation of motion for the mass can be written as 

mz" + k(z" - z') + c(i" - i') = 0 

(2.108) 

(2.109) 

By letting z" - z' = z and i" - i' = i, the equation of motion can be rewritten as: 

mz + kz + ci = mm2Z'sinmt (2.110) 
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2.9 Vibration-Measuring Instrument 

z" 

m 

z' 

�1 
Base 

Figure 2.12 Principles of vibration-measuring instrument 

The solution to the Eq. (2.110) can be given as [similar to Eqs. (2.80), (2.81),
and (2.82)] 

where 

z = Z cos(cot + a)

mco2Z' 
z = ---;::::======== 

�( k - mco2 )2 

+ ( cco )2 

(
k- mco2

Ja = tan-1 

cco 

Again, from Eq. (2.112), 

z 

Z' �[1-(rotron)'J +4D
2(mtmn)'

(2.111) 

(2.112) 

(2.113) 

(2.114) 

If the natural frequency of the instrument con is small and ro/ con is large,
then for practically all values of D, the magnitude of Z/Z' is about 1. Hence the
instrument works as a velocity pickup. 

Also, from Eq. (2.114) one can write that 

1 
(2.115) 
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2 I Fundamentals of Vibration 

If D = 0.69 and wlron is varied from zero to 0.4 (Prakash, 1981), then Eq. 
(2.115) will result in 

So 

Z 1 
--:::::-=const 
ro2Z' ro� 

z (X OJ
2Z' 

However, w2 Z' is the absolute acceleration of the vibrating base. For this 
condition, the instrument works as an acceleration pickup. Note that, for this 
case, the natural frequency of the instrument and, thus, Wn are large, and hence 
the ratio wlwn is small. 

System with Two Degrees of Freedom 

mJ VIBRATION OF A MASS-SPRING SYSTEM

A mass-spring system with two degrees of freedom is shown in Figure 2.13. If the 
masses m1 and m2 are displaced from their static equilibrium positions, the system 
will start to vibrate. The equations of motion of the two masses can be given as 

m1z1 + k1z 1 + k2(z1 - z2 ) = 0 

m/i2 + k3z2 + k2 (z2 - z1 ) = 0 

(2.116) 

(2.117) 

where m1 and m2 are the masses of the two bodies, ki, k2 , and k3 are the spring 
constants, and z, and z2 are the displacements of masses m1 and m2 , respectively. 
Now, let 

z1 = Asin(rot + a) (2.118) 

and 

z2 = Bsin(rot + a) (2.119) 

where A, B, and a are arbitrary constants. 
Substitution of Eq s. (2.118) and (2.119) into Eq s. (2.116) and (2.117), respec

tively, yields 

(2.120) 

and 

(2.121) 
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2.10 Vibration of a Mass-Spring System 

Spring 

constant= k1 

Mass =m1

T 
Spring 

constant = k2

Mass=m2 

T 
Z2 

Spring 

constant = k3

Mass=m1 

Mass=m2

k3z2 

Free body diagram 

Figure 2.13 A mass-spring system with two degrees of freedom 

For nontrivial solutions of ro in Eqs. (2.120) and (2.121) 

or 

=0 

4 ( k1 + k2 k2 + k3 

J 
2 k1k2 + k2 k3 + k3k1

O(1) - ---+--- (1) +-------= 

m1 m2 m1m2 

The roots of the above equation are 

(1)2 = .!..{(-k1_+_k_2 + _k2_+_k_3 

J 2 m1 m2 

(2.122) 

(2.123) 
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2 I Fundamentals of Vibration 

or 

(2.124) 

In the above equation, ro1 and Cth are the natural frequencies of the system. ro1

is the first mode and ro2 is the second. The general equation of motion of the two 
masses can now be written as 

(2.125) 

and 

(2.126) 

The ratios of A1 / B1 and A2 / B2 can also be determined from Eqs. (2.120) and 
(2.121) as 

A1 k2 k2 + k3 - m2CO[ (2.127) 
B1 k1 + k2 - m1CO[ k2 

and 

A2 k2 k2 + k3 - m2COi (2.128) --

B2 k1 + k2 - m1co} k2 

EXAMPLE 2.8 

Refer to Figure 2.13. At time t = 0, let the mass m1 be displaced through a ver
tical distance of 5 mm and released. Determine the displacement equations of 
m1 and m2 with time. Assume m1 = m2 = m and k1 = k2 = k3 = k. 

SOLUTION: 

From Eq. (2.124), the natural frequencies w1 and w2 can be obtained as 

Ol1 = _1 
{( 

2k + 2k
) 
+ [( 2k _ 2k 

)
2 

+ 4k2 
]

112 }1/2 
= _1

( 
4k + 2k 

)
1/2

Ol2 .J2 m m m m m2 .J2 m m 

or 

and 
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2.10 Vibration of a Mass-Spring System 

Again, from Eq. (2.127) 

Ai/ B 1 = k/[2k - m1 (k/m )] = 1 

Similarly, using Eq. (2.128) 

A2/B2 =-1 or 

or 

Thus, the general equations of motion for the two masses [Eqs. (2.125) and 
(2.126)] are, 

z1 = A 1 sin ( � k / m t + a 1 ) + A2 sin ( �3k / m t + a2) (a) 

and 

z2 = A1 sin ( �k/m t + a 1 )- A2 sin ( �3k/m t + a2) (b) 

Based on the initial condition at time t = 0, (1) z1 = 5 mm, z2 = O; and (2) ± 1 = 0, 
±2 = 0. From Eq. (a) 

From Eq. (b) 

Combining Eqs. (c) and (d) 

and 
A2 = 2.5/sina2

From Eq. (a) and the second initial condition (i.e., ± 1 = 0 at time t = 0), 

± 1 = 0 = A 1 W 1 cosa 1 + A2W2 cosa2 

Similarly, from Eq. (b) and the second initial condition (± 2 = 0 at time t = 0), 

±2 = 0 = A 1 W 1 cosa 1 - A2W2 cosa 2

Combining Eqs. (g) and (h), 

2A 1 W 1 cos a 1 = O 

or 

and 

Substituting Eq. (i) into Eqs. (e) and (f), 

2A2m2 cos a2 = 0 

A 1 =A2 =2.5 mm 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 
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2 I Fundamentals of Vibration 

With A 1 
= A2 = 2.5 mm, Eqs. (a) and (b) can be rewritten as 

z1 (mm) = 2.5cos( Jk/m t) + 2.5cos( J3k/m t) 

z2 (mm) = 2.5cos ( Jk/m t )- 2.5cos ( J3k/m t) 

EXAMPLE 2.9 

Consider a drop hammer foundation (Figure 2.14a). This hammer founda
tion can be approximated as a mass-spring system as shown in Figure 2.14b. 
Determine the amplitude of displacement for the anvil and the foundation. 
Given 

Weight of the anvil and the frame = Wi = 578 kN lb 
Weight of the foundation = Wi = 890 kN 
The spring constant for the pad between the foundation and the 
anvil = k2 = 2.19 X 106 kN/m 
The spring constant for the soil supporting the foundation = k3

= 0.32 X 106 kN/m 
Weight of the hammer = Wh 

= 35.6 kN 
Velocity of the hammer before impact = 3.05m/s 

SOLUTION: 

At the impact of the hammer, the initial conditions are as follows: 

Z1 = 0 Z1 = Vo

Z2 = 0 Z2 = 0 

According to the theory of conservation of momentum, 

where 

mh 
= mass of the hammer 

m1 
= mass of the anvil and frame 

vh(before) 
= velocity of the hammer before impact 

vh(after) 
= velocity of the hammer after impact 

v0 
= velocity of the anvil and frame 

(a) 
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Mass of 

anvil and frame= m1 

Mass of 

foundation = m2 

2.10 Vibration of a Mass-Spring System 

Frame 

Anvil 

Pad 

I Hammer I 

Mass=m1

T 
Spring 

constant = k2

Mass=m2

Spring 

constant= k3

(a) (b) 

Figure 2.14 (a) Drop hammer foundation; (b) approximation to a mass-spring
system

Also,

n = Vo - Vh(after)

Vh(before) 
(b)

where n is the coefficient of restitution. The value of n may vary between 0.2 and
0.5. For this problem, let n = 0.4. Combining Eqs. (a) and (b), 

or

l+n 
V 

------v 

0 - l + / 
h(before) 

m1 mh 

1 +0.4
Vo = 

( 578 )
(3.05) = 0.247 mis

1+ -
35.6 

(c)

Comparing the system given in Figure 2.14b with that given in Figure 2.13, it can
be seen that they are equivalent if k1 in Figure 2.13 is equal to zero. The initial
boundary conditions for the motion will be as follows: At time t = 0, 

Z1 = 0, 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



2 I Fundamentals of Vibration 

Using the initial boundary conditions and Eqs. (2.125)-(2.128) with k1 
= 0, 

the following equations for displacement can be obtained. 

and 

where 

zi = Pi [(
k2 _ co?J 

sinco1t -
( 

k2 _ col J 
sinco2t

] 
m1 C01 m1 CO2 

(d) 

(e) 

(f) 

(g) 

The values co1 and co2 can be calculated by using Eq. (2.124). Note that, in that 
equation, co1 < CO2 • According to Barkan (1962, p. 207), it will be sufficient for 
these types of problems to approximate Eqs. (d) and (e) as follows: 

z 1 = ll ( ! - wI} sin W1 t / W1)

and 

z2 = Pi ( sin C01t / coi) 

Calculation of co1 and CO2 [Eq. (2.124)] 

Ol1 
= 

_1_
{(

0 + 2.19 X 106

+ 
2.19 X 106 

+ 0.32 X 106

J 
Ol2 J2. (578)/9.81 (890)/9.81 

-
[(

0 + 2.19 X 106 _ 2.19 X 106 
+ 0.32 X 106

J
2 

+ (578)/9.81 (890)/9.81 

4(2.19 X 106 )2 
]112 }1/2 

+ (578 X 890)/(9.81 X 9.81)

= (1/ J2.)[ 64.84 X 10 3 
+ (89.49 X 106 + 3589 X 106 )1/2 ]112 

= (1/ J2.)( 64.84 X 10 3 
+ 60.65 X 10 3 )1/2

(h) 

(i) 
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2.11 Coupled Translation and Rotation of a Mass-Spring System (Free Vibration) 

or 

W1 = 45.78 rad/sec , w2 = 250.53 rad/sec 

Calculation of Maximum Displacement of Anvil 
From Eq. (h) 

maximum displacement = [ Pi ( k2 / m1 -w}) ]/ W1 

ft 
= Vo _ 0.247 

___ 
0
_
.2

_
4

_
7
_ 

W[ -w} ( 45.78)2 

-(250.53)2 60669.5 

Therefore, 

. d" l 0.247 maximum 1sp acement = 
- -60- 6-6 -9 _-5

2.19 X 106

-(250.53)2

(578)/9.81 
45.78 

= 0.00228 m::::: 2.28 mm 

Maximum Displacement of Foundation 
From Eq. (i) 

maximum displacement of foundation 

_ ( k2/m1 -w} )( k2/m1 -wr )vo 
- (k2/m1)(wr -w})ro 1

[
2.19 X 106 

-(45.78)2 ][
2.19 X 106 

-(250.53)2 ](0.247)
_ (578)/9.81 (578)/9.81 
- 2

·
19Xl

06 

[(45.78)2 -(250.53)2 ]45.78 
(578)/9.81 

= 0.00215 m::::: 2.15 mm 

flll COUPLED TRANSLATION AND ROTATION

OF A MASS-SPRING SYSTEM (FREE VIBRATION) 

Figure 2.15 shows a mass-spring system that will undergo translation and rota
tion. The equations of motion of the mass m can be given as 

(2.129) 

(2.130) 
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2 I Fundamentals of Vibration 

where 0 = angle of rotation of the mass m

.. d20
0=-

dt2

r = radius of gyration of the body about the center of gravity 
(Note: mr2 = J = mass moment of inertia about the cen
ter of gravity) 

k1 , k2 = spring constants 
z = distance of translation of the center of gravity of the 

body 
Now, let 

and 

llk1 + l}k2 = ke 

So, the equations of motion can be written as 

mz + kzz + (/2k2 -l1k2)0 = 0 

mr20 + k00 + (l2k2 -l1k1 )z = 0 

(2.131) 

(2.132) 

(2.133) 

(2.134) 

If l1k1 = l2k2 , Eq. (2.133) is independent of 0 and Eq. (2.134) is independent 
of z. This means that the two motions (i.e. , translation and rotation) can exist 
independently of each one another (uncoupled motion); that is, 

mz + kzz = 0 (2.135) 

,-------/1-----------/2-----..

Mass=m 

eCG 

---
---

--)0 ·--------- ,--------------------------- z 

- - - - - - - - - - _1_ • CG-
-- I 

--
-"'-------

------------------------------

--- ,--------- I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

--- I 
______ 

,

Figure 2.15 Coupled translation and rotation of a mass-spring system 
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2.11 Coupled Translation and Rotation of a Mass-Spring System (Free Vibration) 

and 

mr20 + k00 = 0 (2.136) 

The natural circular frequency Wnz of translation can be obtained by 

w., =� (2.137) 

Similarly, the natural circular frequency of rotation Wne can be given by 

(2.138) 

However, if /1k1 is not equal to l2k2 , the equations of motion (coupled motion) 
can be solved as follows: Let 

Combining Eqs. (2.133), (2.134), (2.139)-(2.141), 

·· (£3) (E2) 0 + r2 0 + r2 z = 0

For solution of these equations, let 

and 

(2.139) 

(2.140) 

(2.141) 

(2.142) 

(2.143) 

(2.144) 

(2.145) 

Substitution of Eqs. (2.144) and (2.145) into Eqs. (2.142) and (2.143) 
results in 

(2.146) 

and 

( :: -01� )e+ ( :: )z =O (2.147) 
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2 I Fundamentals of Vibration 

For nontrivial solutions of Eqs. (2.146) and (2.147), 

or 

E =0 
3 - 2 

-
2 

Wn 
r 

(2.148) 

(2.149) 

The natural frequencies Wn1, Wn2 of system can be determined from 
Eq. (2.149) as 

(2.150) 

Hence, the general equations of motion can be given as 

(2.151) 

and 

(2.152) 

The amplitude ratios can also be obtained from Eq s. (2.146) and (2.14 7) as 

and 

Z2 =-
E2 

82 E1 - cos m�
2

-(E /r2 -m2 ) 3 n1 

-(E lr2
-m2 )3 

n2 

PROBLEMS 

2.1 Define the following terms: 
a. Spring constant
b. Coefficient of subgrade reaction
c. Undamped natural circular frequency
d. Undamped natural frequency
e. Period
f. Resonance
g. Critical damping coefficient

(2.153) 

(2.154) 
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Problems 

h. Damping ratio
i. Damped natural frequency

2.2 A machine foundation can be idealized to a mass-spring system, as 
shown in Figure 2.4. 
Given 
Weight of machine+ foundation = 400 kN 

Spring constant = 100,000 kNlm 
Determine the natural frequency of undamped free vibration of this 
foundation and the natural period. 

2.3 Refer to Problem 2.2, What would be the static deflection Zs of this 
foundation? 

2.4 Refer to Example 2.3. For this foundation let at time t = 0, z = z0 
= 0. 

i =v0 = 0. 
a. Determine the natural period T of the foundation.
b. Plot the dynamic force on the subgrade of the foundation due to the

forced part of the response for time t = 0 to t = 2T.

c. Plot the dynamic force on the subgrade of the foundation due to the
free part of the response fort= 0 to 2T.

d. Plot the total dynamic force on the subgrade [that is, the algebraic
sum of (b) and (c)]. Hint: Refer to Eq. (2.33)

Force due to forced part = k ( Qo�
k 

2 Jsinmt
1-m Icon

Force due to free part = k ( Qol k 

J(- co sinmnt)
1-m2 Im� con

2.5 A foundation of mass m is supported by two springs attached in series. 
(See Figure P2.5). Determine the natural frequency of the undamped 
free vibration. 

2.6 A foundation of mass m is supported by two springs attached in parallel 
(Figure P2.6). Determine the natural frequency of the undamped free 
vibration. 

2. 7 For the system shown in Figure P2. 7, calculate the natural frequency 
and period given k1 

= 100 Nlmm, k2 
= 200 Nlmm, k3 

= 150 Nlmm,

k4 = 100 Nlmm, k5 = 150 Nlmm, and m = 100 kg. 

2.8 Refer to Problem 2.7. If a sinusoidally varying force Q = 50sin mt (N) is 
applied to the mass as shown, what would be the amplitude of vibration 
given co = 47 radls? 

2.9 A body weighs 135 N. A spring and a dashpot are attached to the body 
in the manner shown in Figure 2.2b. The spring constant is 2600 Nim.
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2 I Fundamentals of Vibration 

m 

Figure P2.5 

m 

Figure P2.6 

Q= Q
0 

sin wt 

m=mass 

Figure P2.7 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



Problems 

The dashpot has a resistance of 0. 7 Nat a velocity of 60 mm/s. Determine 
the following for free vibration: 
a. Damped natural frequency of the system
b. Damping ratio
c. Ratio of successive amplitudes of the body (Znf Zn+i)
d. Amplitude of the body 5 cycles after it is disturbed, assuming that at

time t = 0, z = 25 mm.

2.10 A machine foundation can be identified as a mass-spring system. This is 
subjected to a forced vibration. The vibrating force is expressed as 
Q = Q0 sin mt 

Q0 
= 6.7 kN, OJ = 3100 rad/min 

Given 

Weight of machine +foundation = 290 kN 
Spring constant= 875 kN/m 

Determine the maximum and minimum force transmitted to the sub grade. 

2.11 Repeat Problem 2.10 if 
Q0 = 200 kN, OJ = 6000 rad/min 

Weight of machine+ foundation = 400 kN 
Spring constant= 120,000 kN/m 

2.12 A foundation weighs 800 kN. The foundation and the soil can be 
approximated as a mass-spring-dashpot system as shown in Figure 2.2b. 
Given 
Spring constant = 200,000 kN/m 
Dashpot coefficient= 2340 kN·s/m 
Determine the following: 
a. Critical damping coefficient Cc.

b. Damping ratio
c. Logarithmic decrement
d. Damped natural frequency

2.13 The foundation given in Problem 2.12 is subjected to a vertical force 
Q = Q0 sin mt in which 

Q0 = 25 kN, OJ = 100 rad/s 
Determine 
a. the amplitude of the vertical vibration of the foundation, and
b. the maximum dynamic force transmitted to the subgrade.
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Waves in Elastic Medium 

ID INTRODUCTION

If a stress is suddenly applied to a body, the part of the body closest to the source 

of disturbance will be affected first. The deformation of the body due to the 
load will gradually spread throughout the body via stress waves. The nature of 
propagation of stress waves in an elastic medium is the subject of discussion in 
this chapter. Stress wave propagation is of extreme importance in geotechnical 
engineering, since it allows determination of soil properties such as modulus of 
elasticity, shear wave velocity, shear modulus, interpretation of test results of 
geophysical investigation, numerical formulation of ground response analysis; 
and also helps in the development of the design parameters for earthquake

resistant structures. The problem of stress wave propagation can be divided into 
three major categories: 

Elastic stress waves in a bar 
Stress waves in an infinite elastic medium 
Stress waves in an elastic half-space 

However, before the relationships for the stress waves can be developed, it 
is essential to have some knowledge of the fundamental definitions of stress, 
strain, and other related parameters that are generally encountered in an elastic 
medium. These definitions are given in Sections 3.2 and 3.3. 

ID STRESS AND STRAIN

Notations for Stress 

Figure 3.1 shows an element in an elastic medium whose sides measure dx, dy 

and dz. The normal stresses acting on the plane normal to the x, y, and z axes 
are <J x, <J y and <J z ,  respectively. The shear stresses are -r xy, -r yx, -r yz, -r zy, -r xz, and 
-r zx· The notations for the shear stresses are as follows. 
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3.2 Stress and Strain 

z 

'Zj,z 

�-----------------t---------::r-�-�x 

.,...,-,.. 

'Z"zx....:-----," 
.,, •zy 

y 

Figure 3.1 Notations for normal and shear stresses 

If r ij is a shear stress, it means that it is acting on a plane normal to the i 
axis, and its direction is parallel to the j axis. For equilibrium purposes, by taking 
moments, it may be seen that 

'rxy = 'ryx

'rxz = 'rzx

r yz = 'rzy

Strain 

(3.1) 

(3.2) 

(3.3) 

Due to a given stress condition, let the displacements in the x, y, and z directions 
(Figure 3.1) be, respectively, u, v and w. Then the equations for strains and rota
tions of elastic and isotropic materials in terms of displacements are as follows: 

OU 
ex =

ox 

au 

ey 
= 

oy

OW 
ez = 

oz

(3.4) 

(3.5) 

(3.6) 
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3 I Waves in Elastic Medium 

where 

, au au 
Yxy =-+

ax ay 
I _ dW + d'\)

r yz - dy dz
1 _au

+ 
aw

Yzx 
- az ax 

Wx = � ( :; - :: ) 

m =_!_(au _ awJ
Y 2 az ax 

Ex, E
y 

and £z = normal strains in the direction of x, y and z, respectively 

r'xy = sheering strain between the planes xz and yz

y'yz = shearing strain between the planes yx and zx

r'zx = shearing strain between the planes zy and xy

mx , W
y

and mz = the components of rotation about the x, y, and z axes. 

(3. 7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

These derivations are given in most of the textbooks on the theory of elas
ticity (e.g., Timoshenko and Goodier, 1970). The interested reader may consult 
these books as the derivations not covered here in detail. 

Ill HOOKE'S LAW

For an elastic, isotropic material, the normal strains and normal stresses can be 
related by the following equations: 

1 Ex =-[ax -µ(ay +az )] 
E 
1 

Cy = -[ a y -µ( a X + a Z ) ] 
E 

1 £z = -[az -µ(ax +a
y )] 

E 

(3.13) 

(3.14) 

(3.15) 

where Ex, E
y 

and £z are the respective normal strains in the directions of x, y,

and z, Eis Young's modulus, andµ is Poisson's ratio.
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3.4 Longitudinal Elastic Waves in a Bar 

The shear stresses and the shear strains can be related by the following 
equations: 

where the shear modulus ( G) is 

!xy = Gy�y
'ryz = Gr;z 
rzx = Gr�x 

G= 
E 

2(1 + µ)

and r�y, Y�z , and r�x are the shear strains. 

(3.16) 
(3.17) 
(3.18) 

(3.19) 

Equations (3.13)-(3.15) can be solved to express normal stresses in terms of 
normal strains as 

ax = A£+ 2Gcx (3.20) 
cry = Ai+ 2Gcy (3.21) 
az =A£+ 2Gcz (3.22) 

where 

A = 

µE 
(1 + µ)(1- 2µ) (3.23) 

£ =ex +cy +£z (3.24) 
A is known as the Lame's constant and can easily estimated by a relatively easy 
measurement of E and µ of any material and thus can be used for describing the 
velocity of waves through the material . 
From Eqs (3.19) and (3.23), it is easy to see that 

A µ=

2(A+G) (3.25) 

Elastic Stress Waves in a Bar 

ID LONGITUDINAL ELASTIC WAVES IN A BAR

Figure 3.2 shows a rod, of which the cross-sectional area is equal to A. Let the 
Young's modulus and the unit weight of the material that constitutes the rod be 
equal to E and r, respectively. Now, let the stress along section a - a of the rod 
increase by a. The stress increase along the section b -b can then be given by 
a+ (aa/ax)!),,x. Based on Newton's second law, 
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3 I Waves in Elastic Medium 

,a ,b 
' ' 

:a :b 
----- X -----1-�� 

t------u

--�x 

a----- ----- a+ da � 
dx 

,----�----

Figure 3.2 Longitudinal elastic waves in a bar 

Lforce = (mass) (acceleration) 

Thus, summing the forces in the x direction, 

-aA +(a+ aa Ax)A = Ay(�x) a2 u
ax g at2 

(3.26) 

where Ar (Ax)= weight of the rod of length Ax, g is the acceleration due to grav
ity, u is displacement in the x direction, and tis time. 

Equation (3.26) is based on the assumptions that (1) the stress is uniform 
over the entire cross-sectional area and (2) the cross section remains plane during 
the motion. Simplification of Eq. (3.26) gives 

aa = (a2u)
ax 

p at2 

where p = r / g is the density of the material of the bar. However, 

a = (strain) (Young's modulus) = ( !: ) E
Substitution of Eq. (3.28) into (3.27) yields 

a2 u = ( E) ( a2 u)
at2 

p 
ax

2 

(3.27) 

(3.28) 
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3.4 Longitudinal Elastic Waves in a Bar 

or 

where 

a2 u a2 u 
-v2 

ot2 - e 0X2

BI] 

(3.29) 

(3.30) 

The term Ve is the velocity of the longitudinal stress wave propagation. This 
fact can be demonstrated as follows. The solution to Eq. (3.29) can be written in 
the form 

U = F ( 'Uet + X) + G ( Vet - X) (3.31) 

where F( vet+ x) and G( ve
t - x) represent some functions of (ve

t+ x) and 
( vet - x ), respectively. At a given time t, let the function F( vet+ x) be repre
sented by block 1 in Figure 3.3, and 

Ut = F(ve
t + x)

At time t + fl.t, the function will be represented by block 2 in Figure 3.3. Thus, 

Ut + ll.t = F[ Ve (t + fl.t) + (x - fl.x )] 
If the block moves unchanged in shaped from position 1 to position 2, 

or 

F(ve
t + x) = F[v

c (t + fl.t) + (x - fl.x)] 
or 

Ve fl.t = ll_x

X 

Ax 

Block 2 Block 1 

Figure 3.3 Motion of longitudinal elastic wave in a bar 

I 

(3.32) 

(3.33) 

X 
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3 I Waves in Elastic Medium 

Thus the velocity of the longitudinal stress wave propagation is equal to /h/ �t = Ve. 

In a similar manner, it can be shown that the function G( Vet - x) represents a
wave traveling in the positive direction of x.

If the bar described above is confined, so that no lateral expansion is possi
ble, then the above equation can be modified as 

where 

cF u cF u 
-- /2_ 

dt2 -Ve 
dx2

Em 
M = constrained modulus= 

E(l- µ) 
; µ=Poisson's ratio 

(1- 2µ) (1 + µ) 

(3.34) 

(3.35) 

IJI VELOCITY OF PARTICLES IN THE STRESSED ZONE

It is important for readers to appreciate the difference between the velocity of 
the longitudinal wave propagation (Ve) and the velocity of the particles in the 
stressed zone. In order to distinguish them, consider a compressive stress pulse 
of intensity ax and duration t' (Figure 3.4a) applied to the end of a rod (shown 
in Figure 3.4b ). When this stress pulse is applied initially, a small zone of the rod 
will undergo compression. With time this compression will be transmitted to suc
cessive zones. During a time interval �t the stress will travel through a distance 

fh = Ve �t 

At any time t > t', a segment of the rod of length x will constitute the com
pressed zone. Note that 

x =v t' e 

The elastic shortening of the rod then is 

U = (:: ) ( X) = (:: )c V ct') 
Note that u is the displacement of the end of the rod. Now, the velocity of the 
end of the rod and, thus, the particle velocity is 

. _ U _ CJxVe 
u-----

t' E 

Also, it is important to note the following: 

1. Particle velocity u is a function of the intensity of stress ax · The higher the
amplitude of the intensity of stress, the higher the particle velocity for the
same medium is.
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3.5 Velocity of Particles in the Stressed Zone 

b 

t = t' Time, t

(a) 

0-x_�......_......, _______________ _. 

X 

X 

---x---

(b) 

Figure 3.4 Velocity of wave propagation and velocity of particles 

2. However, the longitudinal wave propagation velocity is a function of mate

rial property only. It is independent of the amplitude of stress applied.
3. The wave propagation velocity and the particle velocity are in the same direction

when a compressive stress is applied. However, when a tensile stress is applied,
the wave propagation and the particle velocity are in opposite directions.

The above concepts are used in non-destructive testing apparatus such as pile 
integrity testing (PIT). 
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3 I Waves in Elastic Medium 

The vibration measuring instruments pick the particle vibration velocity and not 
the wave propagation velocity. Usually, in geophysical methods, described later 
in Chapter 4, the peaks in particle vibration velocities are detected, and the wave 
propagation velocities are interpreted. 

Ill REFLECTIONS OF ELASTIC STRESS WAVES

AT THE END OF A BAR 

Bars must terminate at some point. One needs to consider the case of what hap
pens when one of these disturbances, F(vct + x) or G(vct - x) [Eq. (3.31)], meets 
the end of the bar. 

Figure 3.5a shows a compression wave moving along a bar in the positive x 
direction. Additionally, a tension wave of the same length is moving along the 
negative direction of x. When the two waves meets each other (at section a-a), 

the compression and tension cancel each other, resulting in zero stress; however, 
the particle velocity is doubled (Figure 3.5b). This is because the particle velocity 
for a compression wave is in the direction of the motion, and in the tension wave, 
the particle velocity is opposed to the direction of motion. After the two waves 
pass each other, the stress and the particle velocity again return to zero at section 
a-a (Figure 3.5c). The section a-a corresponds to having the stress condition
that a free end of a bar would have. Figure 3.5d shows the portion of the rod
located to the left of section a-a, and the section can be considered as a free
end. By observation it can be seen that, at the free end of a bar, a compression
wave is reflected back as a tension wave having the same magnitude and shape. In
a similar manner, a tension wave is reflected back as a compression wave at the
free end of a bar.

Figure 3.6a shows a bar in which two identical compression waves are traveling 
in opposite directions. When the two waves cross each other at section a-a, the 
magnitude of the stress will be doubled. However, the particle velocity u will be 
equal to zero (Figure 3.6b). After the two waves pass each other, the stress and the 
particle velocity return to zero at section a-a (Figure 3.6c). Section a-a remains 
stationary and behaves as a fixed end of a rod. By observation it can be seen (Fig
ure 3.6d) that a compression wave is reflected back as a compression wave of the 
same magnitude and shape, but the stress is doubled at the fixed end. In a similar 
manner, a tension wave is reflected back as a tension wave at the fixed end of a bar. 

Ill TORSIONAL WAVES IN A BAR

Figure 3. 7 shows a rod to which a torque Tis applied at a distance x, and the end 
at x will be rotated through an angle 0. The torque at the section located at a dis
tance x + Ax can be given by T + car 1ax)Ax and the corresponding rotation 
by 0 + (a01ax)Ax. Applying Newton's second law of motion, 
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3.7 Torsional Waves in a Bar 
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Figure 3.5 Reflection of stress waves at a free end of a bar 

( ar J a20
-T+ T+-Ax =pJAx-

ax at2 

where J is the polar moment of inertia of the cross section of the bar. 

However, torque T can be expressed by the relation 

T=JG
a0 

ax 

(3.36) 

(3.37) 
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3 I Waves in Elastic Medium 
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Figure 3.6 Reflection of stress waves at a fixed end of a bar 

Substitution of Eq. (3.37) into Eq. (3.36) results in 

cF 0 G cF 0 

ot2 p ox2

or 

0 

X 

' X 

X 

r 
X 

(3.38) 

(3.39) 
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3.8 Longitudinal Vibration of Short Bars 
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Figure 3.7 Torsional waves in a bar 

where 

is the velocity of torsional waves. 

X 

( r+ ar ax 
dX

--- -·

Note that Eqs. (3.39) and (3.29) are of similar form. 

Ill LONGITUDINAL VIBRATION OF SHORT BARS

(3.40)

The solution to the wave equations for short bars vibrating in a natural mode can 
be written in the general form as 

(3.41) 

where A1 and A2 are constants, mn is the natural circular frequency of vibra
tion, and U(x) is the amplitude of displacement along the length of the rod and 
is independent of time. 

For longitudinal vibration of uniform bars, if Eq. (3.41) is substituted into 
Eq. (3.29), it yields 

a2 u(x, t) - f!_ a2 u(x, t) = 0
dx2 E dt2
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3 I Waves in Elastic Medium 

or 

a2U(x) p 

ax2 
+ 

E 
(co;) U(x) = 0

The solution to Eq. (3.42) may be expressed in the form 

(3.42) 

(3.43) 

where B1 and B2 are constants. These constants may be determined by the end 
condition to which a rod may be subjected. 

A. End Condition: Free-Free

For the free-free condition, the stress and thus the strain at the ends are zero. So 
at x = 0, dU(x)/dx = 0; and at x = L, dU(x)/dx = 0, where Lis the length of 
the bar. Differentiating Eq. (3.43) with respect to x.

dU(x) _ B1COn (COnX J B2COn . (COnX J --- - --cos -- - --sin --
dx Ve Ve Ve Ve 

Substitution of the first boundary condition into Eq. (3.44) results in 

Again, from the second boundary condition and Eq. (3.44), 

Since B2 is not equal to zero, 

or 

where n = l, 2, 3, . . .  ; thus, 

�

LIJ 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

� 
(3.48) 

The equation for the amplitude of displacement for this case can be given by 
combining Eqs. (3.43), (3.45), and (3.48), or 

(3.49) 
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3.8 Longitudinal Vibration of Short Bars 
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Figure 3.8 Longitudinal vibration of a short bar: free-free end condition 

The variation of the nature of U(x) for the first two harmonics (i .e., n = 1 and 
2) is shown in F igure 3.8. The equation for u(x, t) for all modes of vibration can
also be given by combining Eqs. (3.49) and (3.41).

8. End Condition: Fixed-Fixed

For a fixed-fixed end condition, at x = 0, U(x) = 0 (i.e., displacement is zero); 
and at x = L, U(x) = 0 

Substituting the first boundary condition into Eq. (3.43) results in 

0 = B2 (3.50) 

Again, combining the second boundary condition and Eq. (3.43), 

0 
. (mnL J

= B1 Sill � 
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3 I Waves in Elastic Medium 

Since B1 -:t- 0,

where n = I, 2, 3, ... ; or

or

( m�'L) = nn

�

LIJ 

(3.51)

(3.52)

(3.53)

The displacement amplitude equation can now be given be combining Eqs.
(3.43), (3.50), and (3.52) as 

U(x) = B 1 sin( n�x J (3.54)

Figure 3.9 shows the variation of U(x) for the first two harmonics (n = 1 and 2)

C. End Condition: Fixed-Free

The boundary conditions for the fixed-free case can be given as follows:

At x = 0 (fixed end), 

At x = L (free end),

U(x) = 0
dU(x) =O

dx 
From the first boundary condition and Eq. (3.43),

U(x)=0=B2

Again, from the second boundary condition and Eq. (3.43)

or

where n = I, 2, 3, ... ; so

dU(x) = O = B1mn cos( mnL
)

dx Ve Ve 

mnL I ( ) --=- 2n-I 1t
Ve 2 

(3.55)

(3.56)

(3.57)
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3.9 Torsional Vibration of Short Bars 
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4 

Figure 3.9 Longitudinal vibration of a short bar: fixed-fixed end condition

The displacement amplitude equation can now be written by combining Eqs.
(3.43), (3.55), and (3.57) as 

U(x) = B1 sin[ ½(ln 
� 

I) nx]

Figure 3.10 shows the variation of U(x) for the first two harmonics

ID TORSIONAL VIBRATION OF SHORT BARS

(3.58)

The torsional vibration of short bars can be treated in a manner similar to the
longitudinal vibration given in Section 3.8 by writing the equation for natural
modes of vibration as 

(3.59)
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3 I Waves in Elastic Medium 
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Figure 3.10 Longitudinal vibration of a short bar fixed-free end condition 

where 0 = amplitude of angular distortion and A1 and A2 are constants. 
Solution of Eqs. (3.39) and (3.59) results in 

n'TtVs (J)
n 
=---

L 

for the free-free end and fixed-fixed end conditions; and 

l(2n - l)1tv 
(J) = 2 s 

n 

L 

(3.60) 

(3.61) 

for the fixed-free end condition, where L is the length of the bar and n = 1, 2, 3, .... 
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3.10 Equation of Motion in an Elastic Medium 

Stress Waves in an Infinite Elastic Medium 

EIDJ EQUATION OF MOTION IN AN ELASTIC MEDIUM

Figure 3.11 shows the stresses acting on an element of elastic medium with sides 
measuring dx, dy and dz. For obtaining the differential equations of motion, 
one needs to sum the forces in the x, y, and z directions. Along the x direction, 

y 

[ ( <Y, + a
a
C:: dx) � <Yx ]cdy)(dz) + [ ( T,, + a;;x dz)� T,, ]cdx)(dy)

[( ar x J ] a2 u
+ 'r yx + c); dy - 'r yx ( dx )(dz) = p( dx )( dy )(dz) c)t2 

z 

aa: 
O"z+-z dz 

az 

T. 
.--- -r. + � dz 

zx az 

__ .,,,. 

T. �-----.--- t'zy ZX I 

------dx----t ---�•I 
O"z 

Figure 3.11 Derivation of the equation of motion in an elastic medium 
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3 I Waves in Elastic Medium 

where p is the density of the medium and u is the displacement componentalong the x direction. Alternatively, 
acr X ar yx arZX a2 u -+--+-=p-ax ay az at2 

Similarly, summing forces on the element in the y and z directions 
acr 

y 
arxy 

arzy 
a2v -+--+-=p-

ay ax az at2 
and 

(3.62) 

(3.63) 

(3.64) 
where v and w are the components of displacement in they and z directions, respectively.

EID EQUATIONS FOR STRESS WAVES

A. Compression Waves

Equations (3.62)-(3.64) give the equations of motion in terms of stresses. Now,considering Eq. (3.62) and noting that 'rxy 
= 'r

yx and rxz = rzx, 
a2u acrx arxy arxz p-=-+--+-at2 ax ay az

Substitution of Eqs. (3.16), (3.18), and (3.20) into the preceding equation yields 
P a2

u =�(A£+ 2Gc ) + �(Gr' ) + �(Gr' )at2 ax 
X a y xy az 

X
Z 

Again, substitution of Eqs. (3. 7) and (3.9) into the last expression will yield 

or 

But 

p-=-(AE +2Gcx )+G- -+- +G- -+-
a2 u a _ a ( av au J a ( au aw)at2 ax ay ax ay az az ax 

(3.65) 

(3.66) 
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So 

where 

3.11 Equations for Stress Waves 

d2 u de 2 p-=(A+G)-+GV udt2 dx 

d2 d2 d2 v2 =-+-+-dx2 dy
2 dz2 

(3.67) 

(3.68) 

Similarly, by proper substitution in Eqs. (3.63) and (3.64), the following rela
tions can be obtained: 

and 

d2v de 2 p-=(A+G)-+GV Vdt2 dy 

d2w de 
p-=(A+G)-+GV2 w dt2 dz 

(3.69) 

(3.70) 

Now, differentiating Eqs. (3.67), (3.69), and (3.70) with respect to x, y, and z,

respectively, and adding 

or 

Therefore, 

where 

d2 ( du dv dw J ( d2 e d2 £ d2 £ J p- -+-+- =(A+G) -+-+-dt2 dx dy dz dx2 dy
2 dz2 

Gv2 ( 
du dv dwJ+ -+-+-dx dy dz 

p 
d2 e =(A+ G)(V2e) + G(V2e) =(A+ 2G)V2e dt2 

d2 e _A+2Gv2-_ 2v2 ------ e-v edt2 
p 

p 

(3.71) 

(3.72) 

(3. 73) 

Equation (3.73) is in the same form as the wave equation given in Eq. (3.29). Also 
note that e is the volumetric strain and v 

P 
is the velocity of the dilatational waves. 

This is also referred to as the primary wave, P-wave, or compression wave. Also 
another fact that needs to be pointed out here is that the expression for Ve was 
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3 I Waves in Elastic Medium 

given as Ve = �EI p. Comparing the expressions for Ve and vP, one can see that 
the velocity of compression waves is faster than Ve.

8. Distortional Waves or Shear Waves

Differentiating Eq. (3.69) with respect to z and Eq. (3.70) with respect toy, 

and 

p 
a2 

(av)= 
Ol + G) i)2 f + GV2 

dv
dt 2 dz (dy)(dz) dz 

Subtracting Eq. (3.74) from (3.75) yields 

P 
j_

(
dw _ dvJ = GV2

(aw _ dvJ
dt2 dy dz dy dz 

However, dw/dy-dv/dz = 2mx [Eq. (3.10)]; thus, 

or 

where Vs = �GI p. 

a2 -(J.)x
-

GV2 -p iJt2 - (J.)x 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

Equation (3.77) represents the equation for distortional waves and the veloc
ity of propagation is Vs. This is also referred to as the shear wave, or S-wave. 
Comparison of the shear wave velocity given above with that in a rod [Eq. (3.40)] 
shows that they are the same. Using the process of similar manipulation, one can 
also obtain two more equations similar to Eq. (3.77): 

(3.78) 

and 

(3.79) 
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3.12 General Comments 

EID GENERAL COMMENTS

Based on the derivations for the velocities of comparison waves and shear waves as 
derived in the preceding section, the following general observations can be made. 

1. There are two types of stress waves that can propagate through an infinite
elastic medium; however, they travel at different velocities.

2. From Eq. (3.73),

However, 

and 

V = t'+2G 
p p 

A= µE
(l+µ)(l-µ) 

G= E 
2(1 + µ) 

Substitution of the preceding two relationships into the expression of v 
P 

yields 

Similarly, 

V = 
p 

E(l- µ)

p(l + µ) (1- 2µ) 

v,
=

�
=

�2(1:µ)p 

Combining Eqs. (3.80) and (3.81), 

Vp = 2(1- µ) 

Vs (l-2µ) 

(3.80) 

(3.81) 

(3.82) 

Figure 3.12 shows a plot of v
P

lvs versus µ based on Eq. (3.82). It can be 
seen from the plot that for all values of µ, v

P
lvs are greater than 1. 

3. Table 3.1 gives some typical values of Vp and Vs encountered through various
types of soils and rocks. Techniques for field determination of the velocities
of compression waves and shear waves traveling through various soil media
are described in Chapter 4.

4. The more rigid the materials, the higher the shear and compressional wave
velocities.

5. If µ is 0.5, the velocity of compressional wave becomes unbounded.
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3 I Waves in Elastic Medium 
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Figure 3.12 Variation of vP lvs with µ [Eq. (3.82)] 

0.5 

Wave propagation through saturated soils involves the soil skeleton and 
water in the void spaces. A comprehensive theoretical study of this problem is 

given by Biot (1956). This study shows that there are two compressive waves and 

one shear wave through the saturated medium. Some investigators have ref erred 

to the two compressive waves as the fluid wave (transmitted through the fluid) 

and the frame wave (transmitted through the soil structure), although there is 

coupled motion of the fluid and the frame waves. As far as the shear wave is con

cerned, the pore water has no rigidity to shear. Hence, the shear wave in the soil 
is dependent only on the properties of the soil skeleton. 

Figure 3.13 shows the theoretical variation of the compressive frame wave 
velocities in dry and saturated sands, based on Biot's theory, using the values of the 
constants representative for a quartz sand (Hardin and Richart, 1963). Along with 

Table 3.1 Typical values of v P and vs

Compressive wave velocity, Shear wave velocity, 
Soil type v

P 
(mis) Vs (mis) 

Fine sand 300 90-150

Dense sand 460 230 

Gravel 762 180- 215

Moist clay 1220-1370 150 

Granite 3960-5490 2130-3350 

Sandstone 1370- 3960 610 - 2130 
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3.12 General Comments 
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Figure 3.13 Comparison of experimental and theoretical results for 
compressive frame wave velocities in dry and saturated Ottawa sand ( after 
Hardin and Richart, 1963) 

Source: Hardin, B. 0., and Richard, F. E., Jr. (1963). "Elastic Wave Velocity in Granular Soils," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SMl , pp. 33-65. With 

permission from ASCE. 

that, for comparison purposes, are shown the experimental longitudinal wave veloc
ities [v

c 
from Eq. (3.30)] for dry and saturated Ottawa sands. For a given confining 

pressure, the difference of wave velocities between dry and saturated specimens is 
negligible and may be accounted for by the difference in the unit weight of the soil. 

The velocity of compression waves ( vw ) through water can be expressed as 

Vw = Jfi (3.83) 

where Bw is the bulk modulus of water and Pw is the density of water. Usually 
the value of vw is of the order of 1463 mis. 

Figure 3.14 shows the variation of the experimental shear wave velocity for 
dry, drained, and saturated Ottawa sand. It may be noted that for a given confin
ing pressure, the range of variation of vs is very small. 

The velocity equations lead to the following generalizations: (i) for the same 
material, shear waves will always travel slower than compression waves (ii) the 
more rigid the material, the higher the shear and compression wave velocities 
and (iii) shear waves cannot propagate through liquids as the shear modulus of 
liquids is zero. As a rough approximation, compression or primary wave velocity 
is about 60% more than shear wave velocity in soils. 
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Figure 3.14 Variation of shear wave velocity with confining pressure for 
Ottawa sand ( after Hardin and Richart, 1963) 

Source: Hardin, B. 0., and Richard, F. E., Jr. (1963). "Elastic Wave Velocity in Granular Soils," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SMl, pp. 33-65. 

With permission from ASCE. 

Stress Waves in Elastic Half-Space 

EID RAYLEIGH WAVES

Equations derived in Section 3.11 are for stress waves in the body of an infinite, 
elastic, and isotropic medium. Another type of wave, called a Rayleigh wave, 

also exists near the boundary of an elastic half-space. This type of wave was first 
investigated by Lord Rayleigh (1885). In order to study this, consider a plane 
wave through an elastic medium with a plane boundary as shown in Figure 3.15. 
Note that the plane x - y is the boundary of the elastic half-space and z is posi
tive downward. Let u and w represent the displacements in the directions x and z, 

respectively, and be independent of y. Therefore, 

and 

u =a¢+ alfl
ax az 

a¢ alfl 
w=---

az ax 

(3.84) 

(3.85) 

where ¢ and lfl are two potential functions. The dilation e can be defined as 

- au av awe =e +e +e =-+-+-x y z ax ay az 
= ( a

2¢ + a2lfl ) +co)+ ( a
2¢ - a2lfl ) = a2¢ + a2¢ = v2¢

ax2 axaz az2 axaz ax2 az2 

(3.86) 
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3.13 Rayleigh Waves 
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Wave front 

/ 
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I 

Figure 3.15 Plane wave through an elastic medium with a plane boundary 

Similarly, the rotation in the x - z plane can be given by 

Substituting Eqs. (3.84) and (3.86) into Eq. (3.67) yields 

or 

P�(a¢ + a1/fJ=cA+G)j____(v2¢)+GV2
(a¢ + al/lJ

at2 ax az ax ax az 

a (a2 ¢J a (a21/IJ a 
2 

a 
2 p- -- +p- -- =(A+2G)-(V ¢)+G-(V 1/1)

ax at2 az at2 ax az 

(3.87) 

(3.88) 

In a similar manner, substituting Eqs. (3.85) and (3.86) into Eqs. (3.70), we get 

(1) 

p- -- -p- _.J!_ =(A+2G)-(V2¢)-G-(V2

1f1) a ( a2 ¢ J a ( a2 J a a 
az at2 ax at2 az az 

Equations (3.88) and (3.89) will be satisfied if 

(3.89) 
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3 I Waves in Elastic Medium 

or

and (2)

cF </J = ( A + 2G J v2(/J = v2V2</J at2 P 
p 

p(a2 lfl 1at2 ) = GV2lfl 

(3.90)

(3.91)

Now, consider a sinusoidal wave traveling in the positi ve x direction. Let the
solution of </J and lJI be expressed as 

</J = F(z) exp[i(mt -fx)]
and

'If = G( z) exp[i( mt -fx )]

where F(z) and G(z) are functions of depth

or

f= 21t
wavelength

i=�

Substituting Eq. (3.92) into Eq. (3.90), we get

( :
t

2

2
) { F(z)exp[i(mt -fx)]} = v�V 2 { F(z)exp[i(mt-fx)]}

-m2F(z) = vi[F"(z)-f 2F(z)] 

Similarly, substituting Eq. (3.93) into Eq. (3.91) results in

-m2G(z) = v;[G"(z)-f 2G(z)] 

where

G"(z) = 

a2G(z)
az2 

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)
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3.13 Rayleigh Waves 

and 

Equations (3.96) and (3.97) can be rearranged to the form 

F"(z)-q2F(z) = 0 

G"(z) - s2G(z) = 0 

where 

and 

m2 
q2 = 12 __

v2 
p 

m2 
s2 = 12 __ 

v2 
s 

Solutions to Eqs. (3.100) and (3.101) can be given as 

F(z) = A1e-qz + A2eqz 

G(z) = B1e-sz + B2esz 

where A 1 , A2 , B1 , and B2 are constants. 

(3.100) 

(3.101) 

(3.102) 

(3.103) 

(3.104) 

(3.105) 

From Eqs. (3.104) and (3.105), it can be seen that A2 and B2 must equal 
zero; otherwise F(z) and G(z) will approach infinity with depth, which is not 
the type of wave that is considered here. With A2 and B2 equal zero, 

F(z) = A1e-qz 

G(z) = B1e-sz 

Combining Eqs. (3.92) and (3.106) and Eqs. (3.93) and (3.107), 

or 

'fl = ( Bie-sz ) [ ei(wt-Jx)]

(3.106) 

(3.107) 

(3.108) 

(3.109) 

The boundary conditions for the two preceding equations are at z = 0, 
CJz 

= 0, 'rzx = 0, and 'rzy 
= 0 . From Eq. (3.22),

O",(z = O) =At: +2Ge, =At: +20(!:)=o (3.110) 

Combining Eqs. (3.85), (3.86), and (3.108)-(3.110), one obtains 

(3.111) 
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3 I Waves in Elastic Medium 

or 

Similarly, 

A1 2iGfs 

B1 (;L + 2G)q2 - ;L/2

(aw auJ 'l'zx(z = O) = Grzx = G dx 
+ 

dz = 0

Again, combining Eqs. (3.84), (3.85), (3.108), (3.109), and (3.113), 

2iA1 fq + (s2 + /2 ) B1 = 0 

or 
(s2 + /2 ) 

---

2ifq 

Equating the right-hand sides of Eqs. (3.112) and (3.114), 

or 

2iGfs (s2 + /2 )

(;t + 2G)q2 - ;t/2 2ifq

4Gf 2sq = (s2 + /2 ) [(;L + 2G)q2 - ;t/2 ]

(3.112) 

(3.113) 

(3.114) 

(3.115) 

Substituting for q and s and then dividing both sides of Eq. (3.115) by G2 
/

8
, we 

get 

16(1- ro 2 

J(1- ro2 

J-[2 -(
;t + 2GJ 

ro2 

]
2 

(2 - ro2

J
2 

(3.116) 
vif2 v; 12 G vif2 v; f 2

From Eq. (3.94) 

However, 

21t Wavelength= -
f 

W 1 h velocity of wave v, ave engt = ------
( ro/21t) (ro/21t) 

(3.117) 

(3.118) 

where v, is the Rayleigh wave velocity. Thus, from Eqs. (3.117) and (3.118), 
21t/ f = 2nv,/w, or 

f=O)

v, 
(3.119) 
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3.13 Rayleigh Waves 

So, 

Similarly, 

where 

m2

v�/2

m2

v;/2

2 2 m - v, - 2v2-------a 
v�(m2 /v;) v� 

2 2 m
= v, = v2 

v;(m2 /v;) v; 

2 

2 Vs 
a = 

v2 p

However, v� =(A+ 2G)/ p and v; = G / p. Thus 

v2 G a2=_s =---

v� A+2G 

Table 3.2 Values of V [Eq. (3.126)] 

µ r = v,/vs 

0.25 0.919 

0.29 0.926 

0.33 0.933 

0.4 0.943 

0.5 0.955 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

The term a2 can also be expressed in terms of Poisson's ratio. From the rela
tions given in Eq. (3.25), 

A= 
2µG 

1-2µ

Substitution of this relation in Eq. (3.123) yields 

G 
a2= --------

[2µG I (l- 2µ)] + 2G 
(1- 2µ)G (1- 2µ)

2µG+2G-4µG (2-2µ) 

Again, substituting Eqs. (3.120), (3.121), and (3.123) into Eq. (3.116), 

16(1- a2V2)(l -V2 ) = (2 -V2)(2 -v2 )2

(3.124) 

(3.125) 
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3 I Waves in Elastic Medium 

or 

I V6
- 8V4 -(16a2 

- 24)V2 -16(1-a2 ) = o I (3.126) 

Equation (3.126) is a cubic equation in V2 • For a given value of Poisson's 
ratio, the proper value of V2 can be found and, hence, so can the value of v, in 
terms of vP or Vs. An example of this is shown in Example 3.1. Table 3.2 gives 
some values of v, /vs ( = V) for various values of Poisson's ratio. 

EID DISPLACEMENT OF RAYLEIGH WAVES

From Eqs. (3.84) and (3.85), 

(3.84) 

and 

d</J dlflw=---
dz ax 

(3.85) 

Substituting the relations developed for ¢ and 1/f [Eqs. (3.108), (3.109)] in 
these equations, one obtains 

u = - ( if Aie-qz + B ise-sz )[ eiCmt - fx)]

w = -(Aiqe-qz - Biife-sz)[e iCmt-fx)]
(3.127) 

(3.128) 

However, from Eq. (3.114), B1 = -2iA1lql(s 2 + 1 2 ). Substituting this relation in
Eqs. (3.127) and (3.128) gives 

and 

u = A fi(-e-qz + 2qs
e -szJ [e iCmt-fx)]

i s 2 + 12 

w = A q(-e-qz + 21 2 
e-szJ [e iCmt-fx)]

i s2 + 1 2 

(3.129) 

(3.130) 

From the preceding two equations, it is obvious that the rate of attenuation 
of the displacement along the x direction with depth z will depend on the factor 
U, where 

u = -e-qz + 2qs
e-sz = -e-(qlf)(fz) +[2(q/ l)(s/ l)]e-(slf)(fz) (3 131) s 2 + I 2 ( s 2 I I 2) + 1 . 
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3.14 Displacement of Rayleigh Waves 

Similarly, the rate of attenuation of the displacement along the z direction with 
depth will depend on factor W, where 

212 2 w = -e-qz + ---e-sz = -e-(qlf)(fz) + ----e-(slf)(fz) (3.132) 
s2 + 12 ( s2 I 12 ) + 1 

However, 

or 

Also, 

m2 q2 = 12 __
v2 

p

q2 m2 v2 

-=1---=1--' =l-a2V2

12 f2v� v� 

m2

s2 = 12 __ 
v; 

s2 m2 v2 -=1---=1--' =l-V2

12 j2v; v; 

(3.102) 

(3.133) 

(3.103) 

(3.134) 

If the Poisson's ratio is known, one can determine the value of V from 
Eq. (3.126). Substituting the previously determined values of Vin Eqs. (3.133) 
and (3.134), q If and slf can be determined; hence, U and Ware determinable 
as functions of z and f From Example 3 .1, it can be seen that for µ = 0.25 , 
V = 0.9194. Thus, 

or 

or 

!L = 1-a2V2 = 1-( l
-2µ

Jv2 = 1-( l -0·5 
Jco.9194)2 = 0.7182 

/2 2 -2µ 2 -0.5 

!L = 0 8475 
f 

2 

� = 1-v2 = 1-(0.9194)2 = 0.1547 
f 

; = 0.3933 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



3 I Waves in Elastic Medium 

Substituting these values of q/f and s/f into Eqs. (3.131) and (3.132), 

Ucµ= 0.2s) = -exp (-0.84 75 fz) + 0.5773 exp (-0.3933 fz) 

Wcµ=0.25) = -exp (-0.8475fz) + 1.7321exp (-0.3933fz) 

(3.135) 

(3.136) 

Based on Eqs. (3.135) and (3.136), the following observations can be made: 

1. The magnitude of U decreases rapidly with increasing value of fz. At
fz = 1.21, Ubecomes equal to zero; so, at z = 1.21/ f, there is no motion par

allel to the surface. It has been shown in Eq. (3.94) that f = 2rc/(z). Thus, at
z = 1.21/ f = 1.21 (wave length)/2rc = 0.1926 (wave length), the value of U is 
zero. At greater depths, U becomes finite; however, it is of the opposite sign, 
so the vibration takes place in opposite phase. 

2. The magnitude of W first increases with fz, reaches a maximum value at
z = 0.076 (wave length) (i.e., fz = 0.4775 ), and then decreases with depth.

Figure 3 .16 shows a nondimensional plot of the variation of amplitude of
vertical and horizontal components of Rayleigh waves with depth for µ = 0.25. 
Equations (3.135) and (3.136) show that the path of a particle in the medium is 
an ellipse with its major axis normal to the surface. 

Ell3 ATTENUATION OF THE AMPLITUDE OF ELASTIC

WAVES WITH DISTANCE 

If an impulse of short duration is created at the surf ace of an elastic half-space, 
the body waves travel into the medium with hemispherical wave fronts, as shown 
in Figure 3.17. The Rayleigh waves will propagate radially outward along a cylin
drical wave front. At some distance from the point of disturbance, the displace
ment of the ground will be of the nature shown in Figure 3.18. Since P-waves 
are the fastest, they will arrive first, followed by S-waves and then the Rayleigh 
waves. As may be seen from Figure 3.18, the ground displacement due to the 
Rayleigh wave arrival is much greater than that for P- and S-waves. The ampli
tude of disturbance gradually decreases with distance. 

Referring to Figure 3.18a and b, it can be seen that the particle motion due 
to Rayleigh waves starting at G) can be combined to give the lines of the surface 
particle motion as shown in Figure 3.18c. The part of the motion is a retrograde 
ellipse. 

When body waves spread out along a hemispherical wave front, the energy is 
distributed over an area that increases with the square of the radius: 

E' ex_!_
r2 

(3.137) 
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3.15 Attenuation of the Amplitude of Elastic Waves with Distance 

µ=0.25 

Horizontal 
component 

Vertical 
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Figure 3.16 Variation of the amplitude of vibration of the horizontal and 
vertical components of Rayleigh waves with depth (µ = 0.25) 

Source of disturbance
� A 

Rayleigh 
wave 

Figure 3.17 Propagation of body waves and Rayleigh waves 
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3 I Waves in Elastic Medium 

u 

P-wave

(+ away) 

S-wave R-wave

(a) 1------ Minor tremor-----�•+-1 ,._. - Major tremor �I 

w 

(+ down) 

(b) 

Particle motion 

u 

Direction of wave propagation 

(c) 
w 

Figure 3.18 Wave systems from surface point source in ideal medium (after 
Richart, Hall, and Woods, 1970) 

t 

Source: RICHART & HALL, VIBRATIONS OF SOILS & FOUNDATIONS, lst,©1970. 

Printed and Electronically reproduced by permission of Pearson Education, Inc., NEW YORK, 

NEWYORK. 

where E' is the energy per unit area and r is the radius. However, the amplitude 
is proportional to the square root of the energy per unit area: 

or 

Amplitude rx JE rx J!;-

Amplitude ex ! 
r 

(3.138) 

Along the surface of the half-space only, the amplitude of the body waves is pro
portional to 1/ r2 

•
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3.15 Attenuation of the Amplitude of Elastic Waves with Distance 

Similarly, the amplitude of the Rayleigh waves, which spread out in a cylin
drical wave front, is proportional to 1/ Jr. Thus the attention of the amplitude of
the Rayleigh waves is slower than that for the body waves. 

The loss of the amplitude of waves due to spreading out is called geometrical 
damping. In addition to the above damping, there is another type of loss-that 
from absorption in real earth material. This is called material damping. Thus, 
accounting for both types of damping, the vertical amplitude of Rayleigh waves 
can be given by the relation 

Wn = W1 /'i exp[-/3(rn -11)] (3.139) 
�-;::: 

where Wn and w1 are vertical amplitudes at distance rn and 11, and /3 is the absorp
tion coefficient. 

Equation (3.139) is given by Bornitz (1931). (See also Hall and Richart, 
1963.) The magnitude of /3 depends on the type of soil.

EXAMPLE 3.1 

Given µ= 0.25 , determine the value of the Rayleigh wave velocity in terms 
of Vs.

SOLUTION: 

From Eq. (3.126), 

V6 
- 8V4 -(16a2 - 24)V2 -16(1-a2 ) = o 

Forµ= 0.25, 

Therefore, 

If V2
= 4

' 

1-2µ 1-0.5 1
a2 

=---=---=-

2-2µ 2-0.5 3

V6 
- 8V 4 - ( \6 - 24) V2 

- 16 ( 1 -t) = 0 
3V6 

- 24V4 
+ 56V2 

- 32 = 0 
(V2 

- 4)(3V4 -12V2 
+ 8) = 0 

v2 =4 
' 

s2 
-= 1 -v2 

= 1 -4 = -3 
12 
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3 I Waves in Elastic Medium 

and s If is imaginary. This is also the case for V2
= 2 + 2/ J3 .

Keeping Eqs. (3.129), (3.131), and (3.130), (3.132) in mind, one can see that 
when qi f and sf f are imaginary, it does not yield the type of wave that is being 
discussed here. Thus, 

or 

v2 =2-� 
J3 

V = v, = 0.9194 
Vs 

V, = 0.9194 Vs

Em VISCOELASTIC WAVES IN A BAR

In Section 3 .4, the propagation of longitudinal elastic waves in a bar was dis
cussed. In some cases, soil behavior exhibits viscoelastic characteristics. In many 
instances, the Voigt model as shown in Figure 3.19 has been used to represent 
soil behavior. According to the Voigt model, which is a spring-dashpot system, 

dea= Ee +11-
dt 

where E = elastic modulus of the spring 

1J = dashpot coefficient 
e = strain 

E 

Figure 3.19 Voigt model 

(3.140) 
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3.16 Viscoelastic Waves in a Bar 

From Eq. (3.27) we have

aa = (a2u) 
ax p dt2 

Again, from Eq. (3.140)

a= E(
du

) +1J 
du 

ax dxdt
Combining Eqs. (3.27) and (3.141)

d2 u d2 u d2 u

E dx2 
+ 1J dx2 dt 

= p dt2

Let the input at one end of the bar (i.e., x = 0) be given as

u(O, t) = cosmt
Equations (3.142) and (3.143) can be solved to give

u = exp[Azcos(ut - Bz]

where

and

where

Pm2 

A2 = ----[(1 + t2m2 )0.5 -1]
2£(1 + t;m2 ) 

1 

Pm2 

B2 = ----[(1 + t2m2 )0.5 + 1]
2£(1 + t;m2 ) 

r 

t, = relaxation time = !l 
E 

The velocity of wave propagation can be given as

Vo
=

-
B 

Combining Eqs. (3.146) and (3.148), we obtain

2£ 1 + t,m 
( )

0.5 

[ 

2 2 ]0.5

Vo
= 

p (1 + t;m2)0.5 + 1

(3.27)

(3.141)

(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

When t;ro2 becomes very small, v0 :::::: (EI p )
0·5, which is the velocity in elastic

material [see Eq. (3.30)].
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Properties of Dynamically 

Loaded Soils 

ID INTRODUCTION

It is a well-known fact that earthquake damage is strongly influenced by the 
dynamic properties of local soil deposits. In addition, many problems in civil 

engineering practice require the knowledge of the properties of soils subjected 
to dynamic loading. These problems include the dynamic bearing capacity of 
foundations, response of machine foundations subjected to cyclic loading, soil

structure interaction during the propagation of stress waves generated due to an 

earthquake, and earthquake resistance of dams and embankments. 
A variety of laboratory tests as well as field techniques are available, each hav

ing its own limitations as well as advantages. Some of these tests are specifically 

developed for measuring properties of dynamically loaded soils whereas some 
are modified versions of tests used in the domain of traditional soil mechan
ics. Some of these methods are suitable for small strain range whereas some are 

suitable for large strain range. The range of strain of interest usually dictates the 
type of equipment/method to be used which in turn depends on the problem to 
be analyzed at hand. Some of these equipments are very specialized, expensive, 
and require special training to use and interpret the results. It is worth noting 
that soil behavior over a wide range of strains is nonlinear and, on unloading, 
follows a different stress-strain path forming a hysteresis loop. 

This chapter is devoted primarily to describing various laboratory and field 
test procedures available to measure as well as estimate the soil properties using 
empirical correlations subjected to dynamic loading. This chapter is divided into 

three major parts: 

a. Laboratory tests and results
b. Field tests and measurements
c. Empirical correlations for the shear modulus and damping ratio obtained

from field and laboratory tests. These are the two most important parame
ters needed for most design work.
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4 I Properties of Dynamically Loaded Soils 

Laboratory Tests and Results 

lfl SHEAR STRENGTH OF SOILS UNDER RAPID

LOADING CONDITIONS 

Saturated Clay 

In most common soil test programs, the undrained shear strength of saturated 
cohesive soils is determined by conducting unconsolidated-undrained triaxial 
tests. The soil specimen for this type of test is initially subjected to a confining 
pressure a3 in a triaxial test chamber, as shown in Figure 4.la. After that an axial 
stress �a is applied to the specimen (Figure 4.1 b ). The axial stress �a is gradu
ally increased from zero to higher values at a constant rate of compressive strain. 
The strain rate e is maintained at about 0. 5% or less. The general nature of �a

versus axial strain£ diagram thus obtained is shown in Figure 4. lc. The total 
major and minor principal stresses at failure can now be given as: 

Major principal stress (total)= a1u) = a3 + �a max

Minor principal stress (total)= a3

The total stress Mohr's circle at failure is shown in Figure 4. ld. It can be 
shown (see Das, 1990) that for a given saturated clayey soil, the magnitude 
of �a max is practically independent of the confining pressure a 3, as shown in 
Figure 4. le. The total stress Mohr's envelope for this case is parallel to the nor
mal stress axis and is referred to as the </J = 0 condition (where </J = angle of shear
ing resistance of the soil). The undrained shear strength cu is expressed as 

C = 
�amax 

= 
al(f) -a3

u 
2 2 

(4.1) 

The undrained shear strength obtained by conducting tests at such low-axial 
strain rates is representative of the static loading condition, or Cu = Cu(static )· Experimen
tal results have shown that the magnitude of �amax = a1u) -a3 gradually increases 
with the increase of axial strain rate e. This conclusion can be seen from the labora
tory test results on Buckshot clay (Figure 4.2). From Figure 4.2 , it can be observed 
that Cu

= �amax /2 = (a1cn -a3 )/2 obtained between strain rates of 50% to 425% 
are not too different and can be approximated to be a single value (Carroll, 1963). 
This value can be referred to as the dynamic undrained shear strength, or 

Cu = Cu( dynamic) 

Carroll suggested that for most practical cases, one can assume that 

Cu(dynamic) 
::::::: 1 .S 

Cu(static) 
(4.2) 
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4.2 Shear Strength of Soils Under Rapid Loading Conditions 
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Axial strain,£ 

Total stress Mohr's 
envelope(¢= 0 concept) 

Cu 

1 ._______.__ _ ___._____._ _ _____.____ 

(e) 

Figure 4.1 Unconsolidated undrained triaxial tests 

Sand 

Several vacuum triaxial test results on different dry sands (that is, standard 
Ottawa sand, Fort Peck sand, and Camp Cooke sand) were reported by Whitman 
and Healy (1963). These tests were conducted with various effective confining 
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4 I Properties of Dynamically Loaded Soils 
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Figure 4.2 Unconsolidated-undrained triaxial test results on Buckshot clay 
(after Carroll, 1963) 

Source: Carroll, WP. (1963). "Dynamic Bearing Capacity of Soils. Vertical Displacements of 

Spread Footings on Clay: Statics and Impulsive Loadings." Technical Report No. 3-599, U.S. 

Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi. 

pressures ( a 3) and axial strain rates. The compressive strength Lla max determined 
from these tests can be given as 

where a 3 = effective minor principle stress 

ii1u) = effective major principal stress at failure 

(4.3) 

An example of the effect of axial strain rate on dry Ottawa sand is shown in 
Figure 4.3. It can be seen that for a given a3 the magnitude of LlCJmax decreases 
initially with the increase of the strain rate to a minimum value and increases 
thereafter. From fundamentals of soil mechanics it is known that 
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4.3 Strength and Deformation Characteristics of Soils under Transient Load 
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Figure 4.3 Strain-rate effect for dry Ottawa sand (after Whitman and Healy, 1963) 
Source: Whitman, R.V., and Healy, K.A. (1963). "Shear Strength of Sands During Rapid 

Loadings," Transactions, ASCE, Vol. 128, Part 1, pp. 1553-1594. With permission from ASCE. 

q, = sin-1(�1U) - �
3 J (4.4) 

0'1(1) + 0'3 

where q, = drained soil friction angle 
Based on Figure 4.3 and Eq. (4.4) it is obvious that the initial increase of the 

strain rate results in a decrease of the soil friction angle. The minimum dynamic 
friction angle may be given as (Vesic, 1973) 

(4.5) 

(obtained from static tests-
that is, small strain rate of loading ) 

Ill STRENGTH AND DEFORMATION CHARACTERISTICS

OF SOILS UNDER TRANSIENT LOAD 

In many circumstances it may be necessary to know the strength and deforma
tion characteristics of soils under transient loading. A typical example of tran
sient loading is that occurring due to a blast. Figure 4.4 shows the nature of an 
idealized load versus time variation for such a case. In this figure, QP is the peak 
load, t L is the time of loading, and t n is the time of decay. 
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4 I Properties of Dynamically Loaded Soils 

1----tL--------tn-----

Figure 4.4 Transient load 

Casagrande and Shannon (1949) conducted some early investigations to 
study the stress-deformation and strength characteristics of Manchester sand 
and Cambridge clay soils. Undrained tests were conducted in three specially 
devised apparatuses-one falling-beam apparatus and two pendulum-loading 
apparatuses. In these specially devised pieces of equipments, the loading pattern 
on soil specimens was similar to that shown in Figure 4.4. Figure 4. 5a shows the 
variation of stress and strain with time for an unconfined Cambridge clay spec
imen with tL = 0.02 s. Similarly, Figure 4.5b compares the nature of variation 
of strain versus stress for static and transient (tL = 0.02 s) loading conditions on 
unconfined Cambridge clay specimens. The unconfined compressive strength 
determined in this manner with varying times of loading is shown in Figure 4.6. 
Based on Figures 4.5b and 4.6, the following conclusions may be drawn. 

1. qu(transient) ::::::: 1.5 to 2 
qu(static) 

where qu = unconfined compression strength. This is consistent with the 
findings of Carroll (1963) discussed in Section 4.2. 

2. The modulus of deformation E as defined in Figure 4.7 is about two times as
great for transient loading as compared to that for static loading.

The nature of the stress-versus-strain plot for confined compression tests on
Manchester sand conducted by Casagrande and Shannon (1949) is as shown in 
Figure 4.8. From this study it was concluded that 

1. [o\n - <Y3]1ransient ::::::: 1. l and 
[ (J 1(/) - G 3 lstatic 

2. The modulus of deformation as defined by Figure 4.7 is approximately the
same for transient and static loading conditions.
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Figure 4.5 Unconfined compressive strength of Cambridge clay for varying 
time of loading (after Casagrande and Shannon, 1949) 
Source: Casagrande, A., and Shannon, W.L. (1949). "Strength of Soils Under Dynamic Loads," 

Transactions, ASCE, Vol. 114, pp. 755-772. With permission from ASCE . 

Ill TRAVEL-TIME TEST FOR DETERMINATION OF

LONGITUDINAL AND SHEAR WAVE VELOCITIES 

(uc AND Us ) 

Using electronic equipment, the time tc requirement for travel of elastic waves 
through a soil specimen of length L can be measured in the laboratory. For 
longitudinal wave 

(4.6) 
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Figure 4.6 Unconfined compressive strength of Cambridge clay for varying 

time of loading (after Casagrande and Shannon, 1949) 

Source: Casagrande, A., and Shannon, W.L. (1949). "Strength of Soils Under Dynamic Loads," 

Transactions, ASCE, Vol. 114, pp. 755-772. With permission from ASCE. 

1 

E I 

I 

Strain 

Figure 4.7 Definition of modulus of deformation, E
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4.4 Travel-Time Test for Determination of Longitudinal and Shear Wave Velocities (u
c 

and u
5
) 

Soil 

specimen 

Deviator stress, a1 - a3

Figure 4.8 Confined-compression test on sand-stress-versus-strain behavior 
under static and transient loading 

The modulus of elasticity E can then be calculated from Eq. (3.30) as 

or 

L2 
E= pv; = p-

2
-

tc 

(4.7) 

If the soil specimen is confined laterally, then the travel time will give the 
value of v'c as shown in Eq. (3.35). Thus Ve = L/t' c , and 

L2 
M= p- (4.8) 

(2 
C 

where t' c = time of travel of longitudinal waves in a laterally confined specimen 

M = constrained modulus

Similarly, if the travel time ts for torsional waves through a soil of length L is 
determined, the velocity vs can be given as vs

= L/tc, and 

L2 
G = pv; = p2 (4.9) 

ts 

Whitman and Lawrence (1963) have provided limited test results for v'
c 

in 
20--30 Ottawa sand. The schematic diagram of the apparatus used for measuring 
v'

c 
is shown in Figure 4.9a. The soil specimen was confined in 76.2 mm diam

eter Shelby tube (Figure 4.9b ). Vertical load was applied by an aluminum pis
ton. In this system, a pulse was sent from one piezo-electric crystal and received 
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(Trigger) 
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Power 
supply 

Specimen 
container 

Oscilloscope �---------� 

Barium titanate 
sending transducer 

Barium titanate ------
receiving crystal 

(Received pulse) 

(a) 

------Vertical load 

L--ft:=�S<=,;:::: ---Pulse in 

----Aluminum piston 

l\---::�-----Lucite facing 

_,_ __ Specimen 
-�---Shelby tubing (76.2 mm diameter)

-it-,--1----Ultrasonic waves

----Aluminum piston 

--Ls�f-c::::::::-+--Received pulse 
to oscilloscope 

(b) 

Figure 4.9 Travel-time method: (a) schematic diagram of the laboratory 
setup for measuring v'c ; (b) details of the soil specimen and container for the 
laboratory setup ( after Whitman and Lawrence, 1963) 

Source: Whitman, R.V., and Lawrence, F.V. (1963). "Discussion on Elastic Wave Velocities 

on Granular Soils," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, 

No. SM5, pp. 112-118. With permission from ASCE. 

by a second one at the opposite end. The received signal was displayed on an 
oscilloscope, which allowed measurement of t'c · It was found that the velocity v'c
increases with the increase of axial pressure. 

Ill BENDER ELEMENT TEST FOR DETERMINATION

OF SHEAR WAVE VELOCITY (v5 ) 

The bender element test is now commonly used in the laboratory to evaluate the 
small-strain shear modulus (Gmax ) by measurement of the shear wave velocity 
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4.5 Bender Element Test for Determination of Shear Wave Velocity (u
5
) 

(Vs ) propagation in a soil specimen. The bender element is a thin transducer that 

consists of two piezoelectric plates rigidly bonded to a center shim of brass or 
stainless steel plate. The bender element can be implemented in most common 
laboratory soil research equipment including unconfined compression, oedome

ter, direct shear, triaxial, resonant column, centrifuges, and so forth. Two in-line 

bender elements as a pair are usually installed at both ends of a soil specimen, 
acting as transmitter and receiver, respectively. Figure 4.10a shows a pair of 
bender elements implemented in a triaxial cell, and Figure 4.1 Ob shows a soil 

specimen with a pair of bender elements. 
Various waveforms such as sinusoidal and square waves can be used as an exci

tation signal. The bender element can convert between electrical voltage and mechan

ical excitation/bending motion. The wave form of the input voltage yields a bending 
motion in the transmitter element, which produces a shear wave propagating through 

the specimen. When the receiver element at the other end of specimen is bent by the 

arrival of shear wave, an electrical signal is generated in a wave form. The transmit

ted and received wave forms can be captured and displayed by a digital oscilloscope 
to determine the shear wave travel time Cts ). The shear wave velocity is calculated as 

L 
Vs

=

-

ts 

(a) (b) 

Figure 4.10 Test with bender element: (a) a pair of bender elements installed 

in a triaxial cell; (b) soil specimen with the pair of bender elements (Courtesy of 
Geocomp Corporation, Acton, Massachusetts) 

Source: Courtesy of Geocomp Corporation, Acton, Massachusetts 
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where L is the travel distance and can be determined as the distance between 
the two tips of the two bender elements (Dyvik and Madshus, 1985). The small
strain shear modulus can be determined from elastic wave theory [similar to 
Eq. (4.9)]: 

G =Gmax = pvf = P( � )' 
where p is the mass density of soil. The Gmax measured by bender element can 
generally have good agreement with that obtained from the resonant column test 
(Section 4.6). The advantages of bender element are: (a) the test procedure of 
bender element is simple and efficient; (b) the bender element test is nondestruc
tive; and (c) the number of specimens required is minimal. 

Ill RESONANT COLUMN TEST

The resonant column test essentially consists of a soil column that is excited to 
vibrate in one of its natural modes. Once the frequency at resonance is known, 
the wave velocity can easily be determined. The soil column in the resonant col
umn device can be excited longitudinally or torsionally, yielding velocities of Ve

or vs, respectively. The resonant column technique was first applied to testing 
of soils in Japan by Ishimato and Iida (1937) and Iida (1938, 1940). Since then 
it has been extensively used in many countries, with several modifications using 
different end conditions to constrain the specimen. One of the earlier types of 
resonant column devices in the United States was used by Wilson and Dietrich 
(1960) for testing clay specimens. 

Hardin and Richart (1963) reported the use of two types of resonant col
umn devices-one for longitudinal vibration and the other for torsional vibra
tion. The specimen were free at each end (free-free end condition). A schematic 
diagram of the laboratory experimental setup is shown in Figure 4.11. The 
power supply and amplifier No. 1 were used to amplify the sinusoidal output 
signal of the oscillator, which had a frequency range of 5 Hz to 600,000 Hz. 
The amplified signals were fed into the driver, producing the desired vibra
tions. Figure 4.12a shows the schematic diagram of the driver for torsional 
oscillation. Similarly, the schematic diagram of the driver for longitudinal 
vibration is shown in Figure 4.12b. These devices will give results for low-am
plitude vibration conditions. With free-free end conditions, for longitudinal 
vibrations at resonance 

WnL
vc

=
--

n'Tt 

For n = l (that is, normal mode of vibration), 

V 
= WnL = 2'1tfnL = 2/, LC n 

'1t '1t 

(3.53) 
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4.6 Resonant Column Test 

Amplifier 
No.2 

Oscilloscope 

Figure 4.11 Schematic diagram of experimental setup for resonant column test 
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Figure 4.12 Drawings for steady-system vibration drivers in the resonant 
column devices with free-free end conditions: (a) for torsional vibration; (b) for 
longitudinal vibration ( after Hardin and Richart, 1963) 

Source: Hardin, B. 0., and Richard, F. E., Jr. (1963). "Elastic Wave Velocity in Granular Soils," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SMl, pp. 33-65. 

With permission from ASCE. 

or 
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or 

Similarly, for torsional vibration, at resonance (with n = 1) 

Vs =2fnL 
or 

v, =t =2fnL

or 

(4.10) 

( 4.11) 

Once the magnitudes of E and G are known, the value of the Poisson's ratio can 
be obtained as 

E 

µ
= 

2G -l 
( 4.12) 

Hall and Richart (1963) also used two other types of resonant column devices 
(one for longitudinal vibration and the other for torsional vibration). The end 
conditions for these two types of devices were fixed-free-fixed at the bottom and 
free at the top of the specimen. The general layouts of the laboratory setup for 
this equipment were almost the same as shown in Figure 4.11, except for the fact 
that the driver and the pickup were located at the top of the specimen. This is 
shown in Figure 4.13. Since the driver and the pickup were located close together, 
a correction circuit was introduced to correct the inductive coupling between the 
driver and the pickup. The driver and pickup were attached to a common frame. 
The differences in construction and arrangement of the driver and the pickup 
produce either longitudinal or torsional vibration of the specimen. 

A. Derivation of Expressions for Ve and f for Use in the Fixed-Free-Type

Resonant Column Test

An equation for the circular natural frequency for the longitudinal vibration of 
short rods withfixed-free end conditions was derived in Eq. (3.57) as 

(2n - l)1t Ve
(J) =-----

n 2 L 

However, in a fixed-free type resonant column test, the driving mechanism and 
also the motion-monitoring device have to be attached to the top of the speci
men (Figure 4.14), in effect changing the boundary conditions assumed in deriv
ing Eq. (3.57). So a modified equation for the circular natural frequency needs to 
be derived. This can be done as follows. 
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Figure 4.13 Driving and measuring components for a fixed-free resonant 

column device (after Hall and Richart, 1963) 

Source: Hall, J.R., Jr., and Richard, F.E., Jr. (1963). "Dissipation on Elastic Wave Energy in 

Granular Soils," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, 

No. SM6, pp. 27-56. With permission from ASCE. 
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I 

Figure 4.14 Derivation of Eq. (4.20) 

! 
� Mass = m

--

,� 

L 

• 

Let the mass of the attachments placed on the specimen be equal to m. For
the vibration of the soil column in a natural mode, 

(3.41) 

and 

(3.43) 

At x = 0, U(x) = 0. So B2 in Eq. (3.43) is zero. Thus

U(x) = B1 sin( rot J (4.13)

At x = L, the inertia force of mass mis acting on the soil column, and this can
be expressed as 

a2 u
F=-m

at2 

where F = inertia force. Also, the strain 

au F 
ax AE 

(4.14) 

(4.15) 
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4.6 Resonant Column Test 

where A = cross-sectional area of specimen

E = modulus of elasticity.

Combining Eqs. (3.41), (4.13), and (4.15) we get

F au (au) 
AE 

=

ax

= 

ax 
(A1 sin OJnt + A2 cos OJn t)

= a� [ B, sin( ::x)] (Ai sin OJ nt + A2 cos w.t)

= ( B�:· )[ cos( rot)] CAi sin w.t + A2 cos OJ ntl

Again, combining Eqs. (3.41), (4.13), and (4.14),

F =-m �:� =-m[B, sin( rot)]( :t22) CAi sinro.t + A2 coswnt)

= m w?; B ,  sin ( OJ:,
x) (A, sin OJ nt + A2 cos w.t)

Now, from Eqs. (4.16) and (4.17),

Atx = L 

(4.16)

(4.17)

(4.18)

AE = mOJ n v, tan( OJ;,
L

) (4.19)

However, Ve = �El p; or E = v;p. Substitution of this in Eq. (4.19) gives

or

where

2 _ (
mnL

)A Ve p - m OJn Ve tan 
� 

Ap = mn tan(
mnL

)
m Ve Ve 

ALp = mnL tan(
mnL

)
m Ve Ve 

IA�y =atanal 

r =pg= unit weight of soil

(4.20)

W =mg= weight of the attachments on top of the specimen
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Figure 4.15 Derivation of Eq. (4.23)

�
Mass=m

Polar moment of 
mertia =J

m

--

L 

I 

where ls = mass polar moment of inertia of the soil specimen and J m = mass
polar moment of inertia of the attachments with mass m. 

Thus

and

_ mnL _ 2rcj�L 
Vs-------

a a 

G = pv} = 39.48 ( /�;
2 

)p

C. Recent Developments in Resonant Column Test Equipment

(4.24)

(4.25)

Figure 4.16 shows a recently developed fully automated resonant column assem
bly with a quasi-fixed base and free top (Werden et al., 2013). Unlike the fixed
free end condition shown in Figure 4.15, Figure 4.17 shows a schematic diagram
for the quasi-fixed base and free-top condition. This type of resonant column
device has a torque transducer attached between the specimen's bottom plate
and the fixed base. The actual torque transmitted through the specimen can be
directly measured by the torque transducer. 
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Figure 4.16 Photograph of a fully automated resonant column assembly 

(Courtesy of Geocomp Corporation, Acton, Massachusetts). 

Source: Courtesy of Geocomp Corporation, Acton, Massachusetts 

D. Typical Laboratory Test Results from Resonant Column Tests

Most of the laboratory test results obtained from resonant column tests are for 
low amplitudes of vibration. Low amplitudes of vibration mean strain ampli

tudes of the order of 10-4 or less. 
Typical values of Ve and Vs with low amplitudes of vibration for No. 20-30 

Ottawa sand compacted at a void ratio of about 0.55 are shown in Figures 3.13 

and 3.14. These were conducted using the free-free and fixed-free types of 
resonant column device developed by Hardin and Richart (1963) and Hall and 

Richart (1963). Based on the results given in Figures 3.13 and 3.14, the following 

general conclusions can be drawn: 

1. The values of Ve and Vs in soils increase with the increase of the effective aver

age confining pressure ii O•
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Figure 4.17 Schematic diagram showing quasi-fixed base and free-top 
condition for the soil specimen 

2. The values of Ve and Vs for saturated soils are slightly lower than those for dry
soils. This can be accounted for by the increase of the unit weight of soil due
to the presence of water in the void spaces.

Hardin and Richart (1963) also reported the results of several resonant col
umn tests conducted in dry Ottawa sand. The shear wave velocities determined 
from these tests are shown in Figure 4.18. The peak-to-peak shear strain ampli
tude for these tests was 10-3 rad. From Figure 4.18, it may be seen that the values 
of Vs are independent of the gradation, grain-size distribution, and also the rel
ative density of compaction. However, vs is dependent on the void ratio and the 
effective confining pressure. 

E. Shear Modulus for Large Strain Amplitudes

For solid cylindrical specimens torsionally excited by resonant column devices, 
the shear strain varies from zero at the center to a maximum at the periphery, and 
it is difficult to evaluate a representative strain. For that reason, hollow cylin
drical soil specimens in a resonant column device (Drnevich, Hall, and Richart, 
1966, 1967) may be used to determine the shear modulus and damping at large 
strain amplitudes. Figure 4.19 shows a schematic diagram of this type of appa
ratus, in which the average shearing strain in the soil specimen is not greatly 
different from the maximum to the minimum. The variation of the shear mod
ulus of dense C-190 Ottawa sand with the shear strain amplitude y' is shown in 
Figure 4.20. Note that the value of G decreases with r', but it decreases more 
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• No. 20-No. 30

o No. 80-No. 140
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Figure 4.18 Variation of shear wave velocity with effective confining pressure 
CJ0 for round-grained dry Ottawa sand (after Hardin and Richart, 1963) 
Source: Hardin, B. 0., and Richard, F. E., Jr. (1963). "Elastic Wave Velocity in Granular Soils," 
Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SMl, pp. 33-65. 
With permission from ASCE. 

rapidly for y' > 10-4
_ This is true for all soils. The reason for this can be explained 

by the use of Figure 4.21, which is shear-stress-versus-strain diagram for a soil . 
The stress-strain relationships of soils are curvilinear. The shear modulus that 
is experimentally determined is the secant modulus obtained by joining the 
extreme points on the hysteresis loop. Note that when the amplitude of strain is 
small (that is, y' = y'i; Figure 4.21), the value of G is larger compared to that for 
the larger strain level (that is, r' = r'2). 

F. Effect on Prestraining on the Shear Modulus of Soils

The effect of shear modulus of soils due to prestraining was reported by 
Drnevich, Hall, and Richart (1967). These tests were conducted using C-190 
Ottawa sand specimens. The specimens were first vibrated at a large amplitude 
for a certain number of cycles under a constant effective confining pressure (<JO ). 
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Figure 4.19 Schematic diagram of hollow-specimen resonant column device 
(after Drnevich, 1972). 

Source: Dmevich, V.P. (1972). "Undrained Cyclic Shear of Saturated Sand," Journal of the Soil Mechanics 

and Foundations Division, ASCE, Vol. 98, No. SM8, pp. 807-825. With permission from ASCE. 
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Figure 4.20 Effect of strain amplitude on shear modulus of sand (after 
Drnevich, Hall, and Richart, 1967) 

Source: Dmevich, V.P., Hail, J.R., Jr., and Richart, F.E. Jr. (1967). "Effects of the Amplitude of 

Vibration on the Shear Modulus of Sand," Proceedings, International Symposium on Wave Propagation 

and Dynamic Properties of Earth Materials, University of New Mexico Press, pp. 189-199. 117 
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--r2 

Shear strain, r' 

1 

Figure 4.21 Nature of variation of shear stress versus shear strain 

After that the shear modulii were determined by torsionally vibrating the speci
mens at small amplitudes (shearing strain< 10- 5). Figure 4.22 shows the results
of six series of this type of test for dense sand (void ratio= 0.46). In general, the 

value of G increases with increase of prestrain cycles. 

G. Determination of Internal Damping

In Section 3.15, a distinction was made between internal damping and material 
damping. The internal damping of a soil specimen can be determined by reso

nant column tests. 
In Chapter 2, the derivation of the expression for the logarithmic decrement 

was given as 

where 

c5 = In X n =
21tD 

Xn+1 1- D2 

8 = logarithmic decrement 
D = damping ratio. 

(2 .70) 

The preceding equation is for the case of free vibration of a mass-spring
dashpot system. The damping ratio is given by the expression 
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Figure 4.22 Effect of number of cycle of high-amplitude vibration on shear 
modulus determined at low amplitude (after Drnevich, Hall, and Richart, 1967) 

Source: Dmevich, V.P., Hail, J.R., Jr., and Richart, F.E. Jr. (1967). "Effects of the Amplitude of 

Vibration on the Shear Modulus of Sand," Proceedings, International Symposium on Wave Propagation 

and Dynamic Properties of Earth Materials, University of New Mexico Press, pp. 189-199. 

D
- C

-

C 

- Ccr - 2.Jkms

where ms= mass of the soil specimen (in this case).

For soils, the value of D is small and Eq. (2. 70) can be approximated as 

� Xn u = 1n-- = 2rcD
Xn+1 

Now, combining Eqs. (1.47b) and (4.26) 

8 = rec
,Jkms

(1.47b) 

(4.26) 

(4.27) 

The logarithmic decrement of a soil specimen (and hence the damping ratio D) 
can easily be measured by using a fixed-free type resonant column device. 

The soil specimen is first set into steady-state forced vibration. The driving 
power is then shut off, and the decay of the amplitude of vibration is plotted 
against the corresponding number of cycles. This plots as a straight line on a 
semilogarithmic graph paper, as shown in Figure 4.23. The logarithmic decre
ment can then be evaluated as 

Ounoorra;ed =C) ( In 1:) (4.28) 
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Figure 4.23 Plot of the amplitude of vibration against the corresponding 

number of cycles for determination of logarithmic decrement 

However, in a fixed-free type of resonant column device, the driving and 

the motion-monitoring equipment is placed on the top of the specimen. Hence, 
for determination of the true logarithmic decrement of the soil specimen, a cor

rection to Eq. (4.28) is necessary. This has been discussed by Hall and Richart 

(1963). Consider the case of longitudinal vibration of a soil column, as shown in 

Figure 4.24, in which m = mass of the attachments on the top of the soil speci
men and ms = mass of the soil specimen. With the addition of mass m, Eq. ( 4.27)

can be modified as 

1tC 

8uncorrected = � 
k( ms 

From Eqs. ( 4.27) and ( 4.29), 

__ 8_=�m, +m =�l+-m
8uncorrected ms ms 

(4.29) 

(4.30) 

In order to use Eq. (4.30), it will be required to convert the mass ms into an 

equivalent concentrated mass. The equivalent concentrated mass can be shown 
to be equal to 0.405ms. Thus, replacing ms in Equation ( 4.30) by 0.405ms, 

m 

8 = Duncorrected 1 + ---
0.405ms 

(4.31) 

A similar correction may be used for specimens subjected to torsional vibration, 

which will be of the form 
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Figure 4.24 Fixed-free soil column 

8 = Duncorrected 

Hardin (1965) suggested a relation for 8 of dry sand in low amplitude tor
sional vibration as 

8 = 9n(r')0.2(<Yo)-0.5 

Equation (4.32) is valid for y' = 10-6 to 10-4 and <Yo = 24 kPa to 144 kPa.

Ill CYCLIC SIMPLE SHEAR TEST

(4.32) 

A cyclic simple shear test is a convenient method for determining the shear mod
ulus and damping ratio of soils. It is also a convenient device for studying the 
liquefaction parameters of saturated cohesionless soils (Chapter 10). In cyclic 
simple shear tests a soil specimen, usually 20-30 mm high with a side length (or 
diameter) of 60-80 mm, is subjected to a vertical effective stress a

v 
and a cyclic 

shear stress r, as shown in Figure 4.25. The horizontal load necessary to deform 
the specimen is measured by a load cell, and the shear deformation of the speci
men is measured by a linear variable differential transformer. 
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Figure 4.25 Cyclic simple shear test 

The shear modulus of a soil in the cyclic simple shear test can be 
determined as 

G = amplitude of cyclic shear stress, r

amplitude of cyclic shear strain, r' 
(4.33) 

The damping ratio at a given shear strain amplitude can be obtained from the 
hysteretic stress-strain properties. Referring to Figure 4.26 (also see Figure 4.21), 
the damping ratio can be given as 

D = _l_ area of the hysteresis loop
( 4_34) 

21t area of traingle O AB and O A' B'

Shear stress, r 

Shear strain, y' 

Figure 4.26 Determination of damping ratio from hysteresis loop [Eq. (4.34)] 
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Figure 4.27 Shear modulus-shear strain relationship for medium dense sand 

(after Silver and Seed, 1971) 

Source: Silver, M.L., and Seed, H.B. (1971). "Deformation Characteristics of Sands Under Cyclic 

Loading," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM8, 

pp. 1081-1098. With permission from ASCE. 

Figure 4.27 shows a plot of shear modulus G with cyclic shear strain y' for 
two values of av (Silver and Seed, 1971) obtained from cyclic simple shear tests 
on a medium dense sand (relative density, Rn

= 60%). From the results of this 
study, the following can be stated: 

1. For a given value of y' and av , the shear modulus increases with the number
of cycles of shear stress application. Most of the increase in G takes place in
the first ten cycles, after which the rate of increase is relatively small.

2. For a given value of ifv and number of cycles of stress application, the mag
nitude of G decreases with the amplitude of shear strain y'. (Note: Similar
results are shown in Figure 4.20.)

3. For a given value of y' and number of cycles, the magnitude of G increases
with the increases of if v.

The nature of the shear-stress-versus-shear-strain behavior of a dense sand
under cyclic loading is shown in Figure 4.28. Using the hysteresis loops of this 
type and Eq. ( 4.34), the damping ratios obtained from a cyclic simple shear test 
for a medium dense sand are shown in Figure 4.29. Note the following: 

1. For a given value of if v and amplitude of shear strain y', the damping ratio
decreases with the number of cycles. Since, in most seismic events, the number of
significant cycles is likely to be less than 20 (Chapter 7), the values determined at
5 cycles are likely to provide reasonable values for all practical purposes.

2. For a given number of cycles and av , the magnitude of D decreases with the
decrease of y'.
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Figure 4.28 Stress-strain behavior of dense sand under cyclic shear (after Silver 

and Seed, 1971) 

Source: Silver, M.L., and Seed, H.B. (1971). "Deformation Characteristics of Sands Under Cyclic 

Loading," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM8, 

pp. 1081-1098. With permission from ASCE. 
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Figure 4.29 Effect of number of stress cycles on hysteretic damping for 

medium dense sand (after Silver and Seed, 1971) 

Source: Silver, M.L., and Seed, H.B. (1971). "Deformation Characteristics of Sands Under Cyclic 

Loading," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM8, 

pp. 1081-1098. With permission from ASCE. 
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Figure 4.30 Bilinear idealization of shear-stress-versus-shear-strain plots 

Other parameters remaining the same ( that is, Rn , number of cycles, and ampli
tude of shear strain), a vertical stress increase will decrease the damping ratio. In 
many seismic analysis studies, it is convenient to represent the nonlinear shear-stress
versus-shear-strain relationship in the form of a bilinear model ( also see Figure 7 .10), 
as shown in Figure 4.30 (Thiers and Seed , 1968). In this figure G1 is shear modulus 
up to a limiting strain of y', and G2 is the modulus for strain beyond y',. 

Advantages of the Cyclic Simple Shear Test 

There are several advantages in conducting cyclic simple shear tests. They are 
more representative of the field conditions, since the specimens can be consoli
dated in K0 state. Solid soil specimens used in resonant column tests can provide 
good results up to a shear strain amplitude of about 10-3%. Similarly, the hollow 
samples used in resonant column studies provide results within a strain amplitude 
range of 10-3 % to about 1 %. However, cyclic simple shear tests can be conducted 
for a wider range of strain amplitude ( that is, 10-2 % to about 5%. This range is the 
general range of strain encountered in the ground motion during seismic activities. 

The pore water pressure developed during the vibration of saturated soil spec
imens by a resonant column device is not usually measured. However, in cyclic 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 
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simple shear tests, the pore water pressure can be measured at the boundary (see 
Section 10.10 and Figure 10.20). 

BJI CYCLIC TORSIONAL SIMPLE SHEAR TEST

Another technique used to study the behavior of soils subjected to cyclic load
ing involves a torsional simple shear device. The torsional simple shear device 
accommodates a "doughnut-like" specimen, as shown in Figure 4.31 (Ishibashi 
and Sherif, 1974). The specimen has outside and inside radii of r1 = 50.8 mm and 
r2 = 25.4 mm. The outside and inside heights of the specimen are h 1 = 25.4 mm 
and h2 = 12.7 mm. The soil is initially subjected to a vertical effective stress a

v
,

an outside and inside horizontal effective stress of ii h, and a cyclic shear stress of 
r (Figure 4.32). When a shear stress r is applied, line AB moves to the position 
of A' B' (Figure 4.32). So, the shearing strain is 

, r10 
d 

, r20 
YA

=

-an rB
=

-
h1 h2 

For uniform shear strain throughout the sample, 
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Figure 4.31 Soil specimen for torsional simple shear test 
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4.8 Cyclic Torsional Simple Shear Test 
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Figure 4.32 Applied stresses on a torsional simple shear test specimen 
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(4.35) 

The following can be calculated after application of the horizontal shear 
stress on the specimen. 

Major effective principal stress: 

(4.36a) 
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Intermediate effective principle stress: 

(4.36b) 

Minor principal effective stress: 

(4.36c) 

With proper design [Eq. (4.35)], a cyclic torsional shear device can apply near 
uniform shear strain on the specimen. It can apply shear strains up to about 1 %. 
It also eliminates any sidewall frictional stresses that are encountered in cyclic 
simple shear tests. 

The shear modulus of a specimen tested can be determined as 

G = amplitude of shear stress, r
amplitude of shear strain, r'

The damping ratio corresponding to a given shear strain amplitude can be deter
mined by using Figure 4.21 and Eq. (4.34). 

Liquefaction studies on saturated granular soils can also be conducted by 
this device along with pore water pressure measurement. 

BJ CYCLIC TRIAXIAL TEST

Cyclic triaxial tests can be performed to determine the modulus of elasticity E
and the damping ratio D of soils. In these tests, in most cases, the soil specimen 
is subjected to a confining pressure a O = a 3• After that, an axial cyclic stress �ad

is applied to the specimen, as shown in Figure 4.33. The tests conducted for the 
evaluation of the modulus of elasticity and damping ratio are strain-controlled
tests. A servo-system is used to apply cycles of controlled deformation. 

Figure 4.34 shows the nature of a hysteresis loop obtained from a dynamic 
triaxial test. From this, 

E = �ad

e 
Once the magnitude of Eis determined, the value of shear modulus can be 
calculated by assuming a representative value of Poisson's ration, or 

G= E

2(1 + µ)

Again referring to Figure 4.34, the damping ratio can be calculated as 

D = _I_ area of the hysteresis loop
21t area of triangle O AB and O A' B'

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



4.9 Cyclic Triaxial Test 

CJ3 = CJo 
• 

� Soil specimen -
-

Figure 4.33 Cyclic triaxial test 

A 

Axial strain, £ 

A' 

Figure 4.34 Determination of damping ratio from cyclic triaxial test 
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Stress-controlled dynamic triaxial tests are used for liquefaction studies on 

saturated granular soils (see Chapter 10). 

A more elaborate type of dynamic test device has also been used by several 
investigators to study the cyclic stress-strain history and shear characteristics of 
soils. Matsui, Ohara, and Ito (1980) used a dynamic triaxial system that could 
generate sinusoidally varying axial and radial stresses. 

A. Cyclic Strength of Clay

During earthquakes, the soil underlying building foundations and in structures 
such as earth embankments, is subjected to a series of vibratory stress applica

tions. These vibratory stresses may induce large deformation in soil and thus 
failure. In order to evaluate the strength of clay under earthquake loading con
ditions, Seed and Chan (1966) conducted a number of dynamic triaxial tests. 
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Figure 4.35 Stress conditions on a soil specimen 
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[Note: (b) One-directional loading with symmetrical stress pulses; (c) and (d) one-directional loading with 
nonsymmetrical stress pulses] 
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Figure 4.36 Stress-versus-strain relationship for Vicksburg silty clay under 
sustained and axial pulsating stress ( after Seed and Chan, 1966) 

Source: Seed, H.B., and Chan, C.K. (1966). "Clay Strength Under Earthquake Loading 

Conditions," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM2, 

pp. 53-78. With permission from ASCE. 

Figure 4.35 shows the nature of some of the stress conditions imposed on the 
soil specimens during those tests. The results of this study are very instructive 
and are described in some detail in this section. 

Figure 4. 36 shows the results of a laboratory test on a specimen of Vicks
burg silty clay subjected to sustained and pulsating stresses. The specimen with 
a degree of saturation of 93% was initially subjected to a confining pressure of 
a3 = 100 kPa and then to a conventional axial loading in undrained conditions 
up to 66% of its static strength. This implies that the sustained stress a 1 - a 3 was 
equal to 0.66 [a1cn -a3 ], which corresponds to a factor of safety of 1.5. At this
time the axial deformation of the specimen was about 5%. After that, 100 tran
sient stress pulses were applied to the specimen. (Note: Loading type is similar 
to that shown in Figure 4.35b ). These stress pulses induced an additional axial 
strain of about 11 %, although the static strength was never exceeded. 

Figure 4.37 shows the nature of soil deformation on three soil specimens of 
San Francisco Bay mud subjected to pulsating stress levels to 100%, 80%, and 
60% of normal strength (that is, static strength). For these tests, no sustained stress 

was applied. (Note: Loading type is similar to that shown in Figure 4.35d.) It is 
worth noting that, for each level of pulsating stress, the specimen ultimately failed. 
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Figure 4.37 Deformation of San Francisco Bay mud specimens subjected to 

pulsating stress ( after Seed and Chan, 1966) 

Source: Seed, H.B., and Chan, C.K. (1966). "Clay Strength Under Earthquake Loading 

Conditions," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM2, 

pp. 53-78. With permission from ASCE. 

Figure 4.38 is a plot of the pulsating stress level (as a percent of normal 

strength) versus sustained stress level (as a percent of normal strength) causing 

failure of San Francisco Bay mud at various numbers of transient stress pulses. 

As the number of stress pulses are increasing at the same pulsating stress level, 
the sustained stress level inducing failure is decreasing. The interested readers 

should refer to the original paper by Seed and Chan (1966). Similar plots could be 

developed for various soils to help in the design procedure of various structures. 

mJ SUMMARY OF CYCLIC TESTS

In the preceding sections, various types of laboratory test methods were pre

sented, from which the fundamental soil properties such as the shear modulus, 
modulus of elasticity, and damping ratio are determined. These parameters are 
used in the design and evaluation of the behavior of earthen, earth-supported, 

and earth-retaining structures. As was discussed in the preceding sections, the 
magnitudes of G and D are functions of the shear strain amplitude y'. Hence, 

while selecting the values of G and D for a certain design work, it is essential to 

know the following: 

a. Type of test from which the parameters can be obtained
b. Magnitude of the shear-strain amplitude at which these parameters needs

to be measured
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Figure 4.38 Combinations of sustained and pulsating stress intensities causing 

failure-San Francisco Bay mud (after Seed and Chan, 1966) 

Source: Seed, H.B., and Chan, C.K. (1966). "Clay Strength Under Earthquake Loading 

Conditions," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM2, 

pp. 53-78. With permission from ASCE. 

For example, strong ground motion and nuclear explosion can develop large 
strain amplitudes whereas some sensitive equipment such as electron micro
scopes may be very sensitive to small strain amplitudes. 

Figure 4.39 provides is a useful reference table for geotechnical engineers, as 
it gives the amplitude of shear-strain levels, type of applicable dynamic tests, and 

the area of applicability of these test results. Despite the fact that laboratory test

ing is not ideal, it will continue to be important because soil conditions can be bet
ter controlled in the laboratory. Parametric studies necessary for understanding 
the soil behaviour of soils under dynamic loading conditions must be performed 

in the laboratory conditions. Table 4.2 provides a comparison of the relative qual
ities (what property can be measured and what is the degree of quality of the 
measured property) of various laboratory techniques for measuring dynamic 

soil properties. Similarly, Table 4.3 gives a summary of the different engineering 
parameters that can be measured in different dynamic or cyclic laboratory tests. 
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Figure 4.39 Range and applicability of dynamic laboratory tests 

Table 4.2 Relative Quality of Laboratory Techniques for Measuring Dynamic 
Soil Propertiesa

Relative Quality of Test Results 

Effect of 

Shear Young's Material number of 
modulus modulus damping cycles Attenuation 

Resonant column Good Good Good Good 
with application Fair 

Ultrasonic pulse Fair Fair Poor 

Cyclic triaxial Good Good Good 

Cyclic simple shear Good Good Good 

Cyclic torsional shear Good Good Good 

a After Silver (1981) 

Source: Silver, M.L. (1981). "Load deformation and Strength Behavior of Soild under Dynamic 

Loading," State-of-the-Art Paper, Proceedings, International Conference on Recent Advances in

geotechnical Earthquake Engineering and Soil Dynamics (Ed. Shamsher Prakash), Vol. 3, pp. 873-896. 

Field Test Measurements 

11D REFLECTION AND REFRACTION OF ELASTIC BODY

WAVES-FUNDAMENTAL CONCEPTS 

When an elastic stress wave impinges on the boundary of two layers, the wave 
is reflected and refracted. As has already been discussed in Chapter 3, there are 
two types of body waves-that is, compression waves (or P-waves) and shear 
waves ( or S-waves ). In the case of P-waves, the direction of the movements of 
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4.11 Reflection and Refraction of Elastic Body Waves-Fundamental Concepts 

Table 4.3 Parameters Measured in Dynamic or Cyclic Laboratory Testsa

Resonant column Cyclic triaxial Cyclic simple shear Torsional shear 

Load Resonant frequency Axial force Horizontal force Torque 

Deformation 

Axial Vertical Vertical Vertical Vertical 

displacement displacement displacement displacement 

Shear Acceleration Not measured Horizontal Rotation 
displacement 

Lateral Not usually Not usually Often Not usually 
measured measured controlled measured 

Volumetric None for undrained tests 

Volume of fluid moving into or out of the sample for drained tests 

Pore water Not usually Measured at Measured at Measured at 

pressure measured boundary boundary boundary 

aAfter Silver (1981) 

Source: Silver, M.L. (1981). "Load deformation and Strength Behavior of Soild under Dynamic Loading," 

State-of-the-Art Paper, Proceedings, International Conference on Recent Advances in geotechnical Earthquake 

Engineering and Soil Dynamics (Ed. Shamsher Prakash), Vol. 3, pp. 873-896. 

the particles coincides with the direction of propagation. This is shown by the 

arrows in Figure 4.40a. The shear waves can be separated into two components: 

a. SV-waves, in which the motion of the particles is in the plane of propaga

tion as shown by the arrows in Figure 4.40b
b. SH-waves, in which the motion of the particles is perpendicular to the

plane of propagation, as shown by a dark dot in Figure 4.40c

a C 

Ray of P-wave 

b 
Ray of SV-wave 

d 

(a) 
e 

(b) 

Ray of SH-wave 

(c) 

Figure 4.40 (a) P-wave; (b) SV-wave; and (c) SH-wave 
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4 I Properties of Dynamically Loaded Soils 

If a P-wave impinges on the boundary between two layers, as shown in 
Figure 4.41a, there will be two reflected waves and two refracted waves. The 
reflected waves consist of ( 1) a P-wave shown as P1 in layer 1 and (2) an SV-wave 
shown as SVi in layer 1. 

The refracted waves will consist of ( 1) a P-wave, shown as P2 in layer 2, and 
(2) an SV-wave, shown as SV2 in layer 2 .  Referring to the angles in Figure 4.41a,
it can be shown that

(4.37) 

and 

(4.38) 

SH 

Layer 1 Layer 1 
VP1

VP1

Vsl Interface 
Vsl Interface 

Layer 2 Layer 2 
VP2

VP2

Vsz
Vsz

SH2

(a) (b) 

Interface 

(c) 

Figure 4.41 Reflection and refraction for (a) an incident P-ray; (b) an incident 
SH-ray; and (c) an incident SV-ray 
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4.12 Seismic Refraction Survey (Horizontal Layering) 

where 

vP1 and vJ>i = the velocities of the P-wave front in layers 1 and 2, respectively 

vs1 
and Vs2 

= the velocities of the S-wave front in layers 1 and 2, respectively 

If an SH -wave impinges the boundary between two layers, as shown in Fig
ure 4.41b, there will be one reflected SH-wave (shown as SH1) and one refracted 
SH-wave (shown as SH2). For this case 

/31 = /32 (4.39) 

and 

sin /31 _ sin /32 _ sin {33
(4.40) 

Vsi Vsi Vs2 

Finally, if an SV-wave impinges the boundary between two layers, as shown 
in Figure 4.41c, there will be two reflected waves and two refracted waves. The 
reflected waves are (1) a P-wave, shown as Pi in layer 1 and (2) an SV-wave, shown 
as SVi. in layer 1. The refracted waves are (a) a P-wave, shown as Pi in layer 2, and 
(b) an SV-wave, shown as SV2 in layer 2. For this case, /31 = /32 :

(4.41) 

The mathematical derivations of these facts will not be shown here. For 
further details the reader is referred to Kolsky (1963, pp. 24--38). 

IJD SEISMIC REFRACTION SURVEY (HORIZONTAL

LAYERING) 

Seismic refraction surveys are sometimes used to determine the wave propaga
tion velocities through various soil layers in the field and to obtain thicknesses 
of each layer. Consider the case where there are two layers of soil, as shown in 
Figure 4.42a. Let the velocities of P-waves in layers 1 and 2 be vP1 and vJ>i , respec
tively, and let v Pi < v Pl. A is a source of impulsive energy. If seismic waves are 
generated at A, the energy from the point will travel in hemispherical wave fronts. 
Consider the case of P-waves, since they are the fastest. If a detecting device is 
placed at point B, which is located at a small distance x from A, the P-wave that 
travels through the upper medium will reach it first before any other wave. The 
travel time for this first arrival may be given as 

(4.42) 

whereAB=x. 
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Figure 4.42 Seismic refraction survey-horizontal layering 

G 

Again, consider the first arrival time of a P-wave at a point G, which is 

located at a greater distance from A. In order to understand this, one considers a 
spherical P-wave front that originates at A striking the interface of the two layers. 
At some point C, the refracted P-wave front in the lower medium will be such 
that the tangent to the sphere will be perpendicular to the interface. In that case, 
the refracted P-ray (shown as Pi in Figure 4.42a) will be parallel to the boundary 
and will travel with a velocity v

1>2
. Note that because v

PI 
< v

1>2
, this wave front will 

travel faster than those described previously. From Eq. (4.38) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



4.12 Seismic Refraction Survey (Horizontal Layering) 

Since a3 = 90°, sin a3 = 1, and 

(4.43) 

where ac = critical angle of incidence. 
The wave front just described traveling with a velocity v P2 will create vibrat

ing stresses at the interface, and this will generate wave fronts that will spread 
out into the upper medium. These P-waves will spread with a velocity of v Pi·

The spherical wave front traveling downward from D in layer 2 will have a radius 
equal to DE after a time 11t. At the same time 11t, the spherical wave front trav
eling upward from point D will have a radius equal to DF. The resultant wave 
front in the upper layer will follow a line EF. It can be seen from the diagram that 

v 11t DF PI = - = Slnlc (4.44) v/J2 11t DE 

So ray D FG will make an angle ic with the vertical. It can be mathematically 
shown that for x greater than a critical value Xe, the P-wave that travels the path 
A CDG will be the first to arrive at point G. Let the time of travel for the P-wave 
along the path ACDG be equal tot. Thus, t = tA c + tcD + tDc, or 

where 

t = ( co: i, )( v� ) + 
x 

- ��
tan i, + ( co: i, ) ( v� )

x 2zsinic 2z =-----+---
VP2 VP2 COS ic VPI COS ic 

x =AG.But vP2 = vPI /sin ic [from Eq. (4.44)]; thus 

t = 2-- 2zsin2 ic + 2z = 2- + 2z ( 1
- sin2 ic )

VP2 Vp1 COSlc Vp1 
COSlc VP2 Vp1 COSlc 

X 2z =-+-coszcVP2 VPI

Since sin ic = v PI Iv P2

Substituting Eq. (4.46) into Eq. (4.45), one obtains 

(4.45) 

(4.46) 

(4.47) 
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4 I Properties of Dynamically Loaded Soils 

If detecting instruments are placed at various distances from the source of 

disturbance to obtain first arrival times and the results are plotted in graphical 
form, the graph will be like that shown in Figure 4.42b. The line Oa represents 
the data that follow Eq.(4.42). The slope of this line will give l/v

p1
. The line ab

represents the data that follow Eq. (4.47). The slope of this line is 1/v
/>}_

. Thus the
velocities of v

PI 
and v

/>}_ 
can now be obtained.

or 

If line ab is projected back to x = 0,  one obtains

2z fv2 -v2

t
=f. =

\J Pl. 
Pl 

l (v
p1)(v

J>2
) 

z = (ti)( V p1 )( V Pl. ) = tiV Pi

2�v� - v� 2 COS ie 
(4.48) 

where ti is the intercept time. Hence, the thickness of layer 1 can be eas

ily obtained. 
The critical distance Xe (Figure 4.42b) beyond which the wave refracted at the

interface arrives at the detector before the direct wave can be obtained by equat

ing the right-hand sides of Eqs. (4.42) and (4.47): 

or 

Xe Xe 
2z�v� -v� 

-=-+-----
v 

P1 V Pl. V P1 V Pl. 

V
p1VJ>l. 

= 2z VJ>l. +vPI
V

J>l. 
- V

p1 V
J>l. 

- V
PI 

The depth of the first layer can be calculated from Eq. (4.49) as 

Xe z = -
2 

A. Refraction Survey in a Three-Layered Soil Medium

(4.49) 

(4.50) 

Figure 4.43 considers the case of a refraction survey through a three-layered soil 
medium. Let v

PI, v/>}_ 
and v

PJ 
be the P-wave velocities in layers 1, 2, and 3, respec

tively, as shown in Figure 4.43a ( v Pi < v Pl. < v PJ ). If A in Figure 4.43a is a source
of disturbance, the P-wave traveling through layer 1 will arrive first at B, which 

is located a small distance away from A. The travel time for this can be given by 
Eq. (4.42) as t = x/v

P1
• At a greater distance x, the first arrival will correspond

to the wave taking the path A CD E. The travel time for this case be given by

Eq. (4.47) as 
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Figure 4.43 Refraction survey in a three-layer soil 

x 2z1 �v� - v�
1 t = - + -----'-----

v Pl (vPI) (vPl) 

where z1 
= thickness of top layer. 

K 

At a still larger distance, the first arrival will correspond to the path AGHIJK. 
Note that the refracted ray H-1 will travel with a velocity of v

/J3
. The angle ic2 is 

the critical angle for layer 3. 

For this path (AGHIJK) the total travel time can be derived as 

2z �v2 v2 2z �v2 - v2
X __ 1 __ /J3_-__ p_1 +--2 __ /J3 ___ P2_ t = -+ 

v/J3 (v/J3 )(vp1 ) (v/J3 )(vP2 ) 

(4.51) 

(4.52) 
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4 I Properties of Dynamically Loaded Soils 

where z2 = thickness of layer 2. 
So, if detecting instruments are placed at various distances from the source 

of disturbance to obtain first arrival times, they can be plotted in a t-versus-x 
graph. This graph will appear as shown in Figure 4.43b. The line Oa corresponds 
to Eq. (4.42), ab corresponds to Eq. (4.47), and be corresponds to Eq. (4.52). The 
slopes of Oa, ab, and be will be ljv

P1
, l/v

1>2 
and 1/v

/J3
, respectively. The thickness 

of the first layer z1 can be determined from the intercept time til in a similar man
ner, as shown in Eq. (4.48), or 

The thickness of the second layer can be obtained from Eq. (4.52). Referring 
to Figure 4.43b, the expression for the intercept time ti2 can be evaluated by sub
stituting x = 0 into Eq. ( 4. 52): 

or 

2z1 �v� -v�
1 

2z2 �V�
3 

- v� 
t = ti2 = ----- + -----

( V P3 ) ( V pJ ( V P3 )( V Pl ) 

B. Refraction Survey for Multilayer Soil

(4.53) 

In general, if there are n layers, the first arrival time at various distances from 
the source of disturbance will plot as shown in Figure 4.44. There will be n seg
ments in the t-versus-x plot. The slope of the nth segment will give the value 
ljv

P
n (n = 1, 2, ... ). More details on advanced test methods (detecting inclination 

of the bedrock is briefly described later) and interpretation could be found in 
several geophysics books. 

The value of P-wave velocity in a natural deposit of soil will depend on sev
eral factors, such as confining pressure, moisture content, and void ratio. Some 
typical values of v

P 
are given in Table 3.1. It is worth noting that P-wave veloc

ity through saturated soils will be approximately 1500 m/sec. However, P-wave 
velocity value could reach the order of few kilometers per second in case of 
rocks. 
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Figure 4.44 Refraction survey for multilayer soil 

EXAMPLE4.1 

Following are the results of a refraction survey (horizontal layering of soil). 
Determine the P-wave velocities of the soil layers and their thicknesses. 

Distance (m) Time of first arrival (ms) 

2.5 5.5 

5.0 11.1 

7.5 16.1 

15.0 24.0 

25.0 30.8 

35.0 38.2 

45.0 46.1 

55.0 51.3 

60.0 52.8 

SOLUTION 

The time-distance plot is given in Figure 4.45. From the plot, 

--
5
--=472m/s 

10.6 X 10-3

10 

7.2 X 10-3 
= 1389 m/s

lO 
3 

= 3333 m/s
3x10-
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Figure 4.45 

From Eq. (4.48) 

From Eq. (4.53) 

10 20 30 

Distance, x (m) 

40 

tn = 13.3 X 10-3 s; ti2 = 35.6 X 10-3 s. 

50 

z _ (ti 1 )(v
pJ(v

P1
) _ (13.3 X l0-3)(472)(1389)

1 
- 2Jv� -v�

-
2�(1389)2 - ( 472)2

= 3.39 m 

_ 1 
[ 

2z1Jv�
3 

-v� 
] 

(v
p3) (v

P1
) 

Z2 - - l-2 - ---'-----
2 1 (v

P3 
)(v

/Jl
) Jv� -v� 

= _!_[35_6 X 10_3 _ (2)(3.39)�(3333)2 -(472)2 ]

2 (3333)(472) 

X (3333)(1389)
)(3333)2 -(1389)2

= _!_(0.02138) (1528) = 16.33 m 
2 

60 
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4.13 Refraction Survey in Soils with Inclined Layering 

mJ REFRACTION SURVEY IN SOILS

WITH INCLINED LAYERING 

Figure 4.46a shows two soil layers. The interface of soil layers 1 and 2 is inclined 
at an angle f3 with respect to the horizontal. Let the P-wave velocities in layers 1 
and 2 be v PI and v Pl' respectively ( vP1 < v Pl).

If a disturbance is created at A and a detector is placed at B, which is small 
distance away from A, the detector will first receive the P-wave traveling through 
layer 1. The time for its arrival may be given by 

------------- X _______________ , 

1---------x-----------
A B 

:: : -�- .. 
·.,·· 

.- . .  ' �...: ·. ·.·:.· 

AF=z' ,' ,'A 1 - - - - - - - -
I 

I z'I 
I 

I 

� 

s ..... 
-ro 
> 

·i::
I-< 

....., 
I-< .....
� 

(a) 

b' 
lu versus x 

a' 

-- -

-
lid 

td versus x 
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x increasing for td
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x increasing for lu

(b) 

Figure 4.46 Refraction survey in soils with inclined layering 
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4 I Properties of Dynamically Loaded Soils 

However, at a larger distance the first arrival will be for the P-wave following the 
path A CD £-which consists of three parts. The time taken can be written as 

Referring to Figure 4.46a, 

z' 
tAC 

=

VPI 
COS le 

CD AAt - AA1 - A2A3 - A3/4i 
ten= - = ----------

v P2 '\) P2 

_ xcos/3- z'tanie - z'tanie - xsinf3tanie

Vp2 

z' 
+ 

xsin/3 
D A3 + A3E cos ie cos ietnE = ---- - ------

VP1 VP1 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

Substitution of Eqs. (4.55), (4.46), and (4.57) into Eq. (4.54) and simplification 
yields 

(4.58) 

Now, if the source of disturbance is E and the detector is placed at A, the first 
arrival time along the refracted ray path may be given by 

2z"cos� x . 
(
' /3) tu =---+-sm le -

VPI VPI 

(4.59) 

In the actual survey, one can have a source of disturbance such as A and 
observe the first arrival time at several points to the right of A and have a source 
of disturbance such as E and observe the first arrival time at several points to the 
left of E. These results can be plotted in a graphical form, as shown in Figure 
4.46b (time-versus-x plot). From Figure 4.46b note that the slopes of Oa and O' a' 
are both l/v

P1
• The slope of the branch ab will be [sin(ie + f3)]/v

P1
' as can be seen 

from Eq. (4.58). Similarly, the slope of the branch of a'b' will be [sin(ie - /3)]/v
/JJ

[see Eq. (4.59)]. Let 

sin((+ /3) 
md

=
---- (4.60) 

vP1 

and 

(4.61) 
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4.13 Refraction Survey in Soils with Inclined Layering 

From Eq. ( 4.60), 

Again, from Eq. (4.61) 

ic = sin-1(muvJ}J ) + /3

Solving the two preceding equations, 

I ic = ½[sin-1(v
P1md) + sin-1(v

p
,mu )] I 

and 

/3 - 1 [ · -1 ( ) 
· -1 ( )] - 2 Sill Vp

1
md - Sill Vp

1
mu 

Once ic is determined, the value of v can be obtained as 
P'2 

V 
V = Pt 

P2 • • 
Sill le 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

Again referring to Figure 4.46b, if the ab and a' b' branches are projected 
back, they will intercept the time axes at tid and tiu, respectively. From Eqs. (4.58) 
and (4.59), it can be seen that 

or 

and 

or 

2z' cos ic 
tid = ----

VPl 

z' = (tid )vp1 

2 cos( 

2z" cosic

fiu
=

----
Vpi

z" = ( f iu ) V Pt

2 COS ic 

(4.67) 

(4.68) 

Since ic and v Pi are known and tid and tiu can be determined from a graph, one can
obtain the values of z' and z". 
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4 I Properties of Dynamically Loaded Soils 

EXAMPLE 4.2 

Ref erring to Figure 4.46a, the results of a refraction survey are as follows. The 
distance between A and E is 60 m. 

Point of disturbance A 

Distance 
from A (m) 

5 

10 

15 

20 

30 

40 

50 

60 

Determine 

a. VPI and V
pz

,

b. z' and z", and
C. {3
SOLUTION 

Time of first 
arrival (ms) 

12.1 

25.2 

35.3 

48.0 

60.2 

68.5 

76.8 

85.1 

Point of disturbance E 

Distance from Time of first 
E(m) arrival (ms) 

5 11.5 

10 22.8 

15 34.5 

20 44.8 

30 69.1 

40 78.1 

50 82.8 

60 87.7 

The time-distance records have been plotted in Figure 4.47. 

a. From branch Oa,

10 
v =---=400 m/s 

Pl 25 X 10-3 

From branch O' a'

10 
v =---=454 m/s 

Pl 22 X 10-3 

The average value of v PI is 427 mis.
From the slope of branch ab,

md = 8.8 X l0-3 = 0.88 X 10-3 10 
Again, from the slope of branch a' b',

m = sx10-3 =0.5x10-3u 10 
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4.13 Refraction Survey in Soils with Inclined Layering 

50 40 30 20 10
o--------------------------1,-------------

10 

Figure 4.47 

From Eq. (4.64), 

20 30 

Distance, x (m) 

ic = ½ [ Sin - l ( V PI md ) + Sin - l ( V PI mu )] 

40 

sin- 1( v
Pi

md ) = sin- 1[( 427)(0.88 X 10-3 )] = 22.07°

sin-1(vPi mu) = sin-1[(427)(0.5 X 10-3)] = 12.33°

Hence 

ic = ½(22.07° + 12.33°) = 17.2°

Using Eq. (4.66) 

V 

V = P
I

P2 • • 

Sln le

-4-2 -7-
= 1444 m/s

sin (17 .2) 

b. From Eq. (4.67)

z' = (tid )(vpJ
2 cosic

tid = 35.9 X 10-3 s (from Figure 4.47). So

z' = (35.9 X 10-3) ( 427) 
= S.03 m

2 cos(l7.2) 

50 60 
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4 I Properties of Dynamically Loaded Soils 

Again, from Eq. (4.68), 

,, ( liu ) ( V pJz =---

2 COS ic 

From Figure 4.47, tiu = 59.8 X 10-3 s.  

z
" 

= 

(59.8 X 10-3)( 427)
= 13_37 m 

2cos (17.2) 

c. From Eq. (4.65),

/3 = ½ [sin- 1 (vp1 md )-sin- 1 (vPi mu )]=½ (22.07° -12.33°) = 4.87
°

DD REFLECTION SURVEY IN SOIL

(HORIZONTAL LAYERING) 

Reflection surveys can also be conducted to obtain information about the soil 
layers. Figure 4.48a shows a two-layered soil system. A is the point of distur
bance. If a recorder is placed at Cat a distance x away from A, the travel time for 
the reflected P-wave can be given as 

where 

_AB+BC _ 2 �(xJ2 
t------- z + -

VP1 VP1 2 

t = total travel time for the ray path ABC. 

From Eq. (4.69), the thickness of layer 1 can be obtained as 

(4.69) 

(4.70) 

If the travel times t for the ref lected P-waves at various distances x are 
obtained, they can be plotted in a graphical form, as shown in Figure 4.48b. 
Note that the time-distance curve obtained form Eq. (4.69) will be a hyperbola. 
The line Oa shown in Figure 4.48b is the time-distance plot for the direct P-waves 
traveling through layer 1 (compare line Oa in Figure 4.48b to the line Oa in 
Figure 4.42b). The slope of this line will give l/vp1

• 

If the time-distance curve obtained from the reflection data is extended back, 
it will intersect the time axis at t0 • From Eq. (4.69) it can be seen that at x = 0, 

2z 
to = -

vP1 
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4.14 Reflection Survey in Soil (Horizontal Layering) 

x----------------...i 

I 

I 

C 

�� Layer 1 

B Layer 2 

(a) 

a 

[Eq. (4.69)] 

1 

Distance, x
(b) 

x
2 

(c) 

Figure 4.48 Reflection survey in soil-horizontal layering 
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4 I Properties of Dynamically Loaded Soils 

or 

(4.71) 

With v Pi and t0 known, the thickness of the top layer z can be calculated.
Another convenient way to interpret the reflection survey record is to plot a 

graph of t2 versus x2• From Eq. (4.69), 

t2 =+[z2 +(x)2

]=+(4z2 +x2 ) 
VPI 2 V

Pl 

(4.72) 

This relation indicates that the plot of t 2 versus x2 will be a straight line, as 
shown in Figure 4.48c . The slope of this line give l/v�

1 
and the intercept on the t2

axis will be equal to tJ. Substituting t = t0 and x = 0 into Eq. (4.72), 

or 

4z2

t2 -_ 
0 - 2 

VP1 

t2 2
z2 

= 

0 Vp1 (4.73) 

With tJ and v�
1 
known, the thickness of the top layer can now be calculated. 

EXAMPLE 4.3 

The results of a reflection survey on a relatively flat area (shale underlain by 
granite) are given here. Determine the velocity of P-waves in the shale. 

Distance from point Time for first 
of disturbance (m) reflection (s) 

30 1.000 

90 1.002 

150 1.003 

210 1.007 

270 1.011 

330 1.017 

390 1.023 
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4.14 Reflection Survey in Soil (Horizontal Layering) 

SOLUTION 

Using the time-distance records, the following table can be prepared. 

X x2 t ,2 

(m) (m2) (s) (.\'2)

30 900 1.000 1.000 

90 8,100 1.002 1.004 

150 22,500 1.003 1.006 

210 44,100 1.007 1.014 

270 72,900 1.011 1.022 

330 108,900 1.017 1.034 

390 152,100 1.023 1.046 

A plot of t
2 versus x2 is shown in Figure 4.49. From the plot, 

(�)2 

(�t)2 

79200 
= 1816.6 m/s 

0.023 

1.07 ------------------------� 

1.05 

� 1.03 
� 

1.01 

0.99
0 

Figure 4.49 

37,000 

I 

(�t)2 = 0.023

(Ax)2 = 79,200 

74,000 111,000 148,000 185,000 
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4 I Properties of Dynamically Loaded Soils 

11D REFLECTION SURVEY IN SOIL (INCLINED LAYERING)

Figure 4.50 considers the case of a reflection survey where the reflecting bound
ary is inclined at an angle f3 with respect to the horizontal. A is the point for the 
source of disturbance. The reflected P-ray reaching point C will take the path
ABC. Referring to Figure 4.50, 

AB+ BC= A'B +BC= A'C 

But 

(A'C)2 
= (A'A2 )2 

+ (A2C)2

A' A2 = AA' cos f3 = 2z' cos f3

A2C =A2A+ AC= 2z' sin/3 + Xe

Substituting Eqs. (4.75) and (4.76) into Eq. (4.74), 

A'C = )(2z' cos /3)2 
+ (2z' sin/3 + Xe )2

= )4z'2 
+ x� + 4z'xe sin/3

Thus, the travel time for the reflected P-wave along the path ABC will be 

A'C 
te = --

vPI 

----------XE----------

-------Xe--------

Layer 2 

VP2

Figure 4.50 Reflection survey in soil-inclined layering 

(4.74) 

(4.75) 

(4.76) 
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4.15 Reflection Survey in Soil (Inclined Layering) 

So 

te = -

1-�4z'2 
+ x� + 4z'xe sin/3

VPI 

(4.77) 

In a similar manner, the time of arrival for the reflected P-waves received at 
point E can be given as 

Combining Eqs. (4.77) and (4.78), 

. /3 
v� (t} - fl;) XE + Xe

Sln = 
_r_, __ _ 

4z'(xE - Xe) 4z' 

Now, let t = (tE + te )/2 and lit= tE - te

Substitution of the preceding relations in Eq. ( 4. 79) gives 

. /3
vp2 t(lit) XE+ Xe 

sin = -�
1

---

2z'(xE - Xe) 4z' 

If Xe is equal to zero, Eq. (4.80) will transform to 

sin /3 = 

v! t(lit) _ xE

2z'xE 4z' 

(4.78) 

(4.79) 

(4.80) 

(4.81) 

If Xe
= 0 and /3 = 0 (that is, the reflecting layer is horizontal) then, from Eq. 

(4.81), 

2 

A XE 
o.t =--

2v2 t 
Pi 

(4.82) 

If Xe = 0 and lit > x} l2v! t, the reflecting layer is sloping down in the direc
tion of positive x, as shown in Figure 4.50. If Xe

= 0 and lit< x}l2v�
1 
t, the 

reflecting layer is sloping down in the direction of negative x (that is, opposite to 
that shown in Figure 4.50). 

In actual practice, that point of disturbance A (Figure 4.51) is generally 
placed midway between the two detectors, so xE = -xe = x. So, from Eq. (4.80) 

. 
/3 

v� t(lit) 
Sln =

---=---ri __ 

4z'x 
(4.83) 
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4 I Properties of Dynamically Loaded Soils 

----x----------------x----, 

. ·:.·.·· . . . . . . . · .

Figure 4.51 

. . . . . .
.
. · . ·_ . · 

. 
. . . . .

I 

I 

A' 

I 

I 

I 

I 

I 

/ 

/ 

/ 

/ 

. . - . 
. . . . . . . · . · . ·

Referring to Figure 4.51, AA'= 2z' = (A'C + A' E)/2. So

2z' 1 
(

A'C A'E
J 

1 
-=- -+- = -(le+lE ) = l 
V

/JI 
2 V

p1 
V

p1 
2 

Combining Eqs. (4.83) and (4.84), 

EXAMPLE 4.4 

. /3 V
p1 

(�l) 
Sln =�--

2x 

. ·.-:-· . .  ·. . . . .

Layer 1 

VP1 

(4.84) 

(4.85) 

Refer to Figure 4.51. Given: x = 85.5 m, le = 0.026 s, and lE = 0.038 s. Deter
mine f3 and z'. The value of v

PI 
i.e., the velocity of the primary wave through 

the top layer has been previously determined to be 410 mis. 

SOLUTION 

l 
= le + lE = 0.026 + 0.038 = 

0_032 S
2 2 

�l = lE - le = 0.038 - 0.026 = 0.012 S
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4.16 Subsoil Exploration by Steady-State Vibration 

From Eq. (4.85) 

/3 = sin- 1 
[vP1 (�t)] = sin- 1 [ 

( 410)(0.012)] = 
1.650 

2x (2)(85.5) 

From Eq. (4.84) 

or 

z'
= 

t v/JJ 
= 

(0.032)( 410) 
= 6_56 m 

2 2 

11[!1 SUBSOIL EXPLORATION BY

STEADY-STATE VIBRATION 

In steady-state vibration, a circular plate placed on the ground surf ace is vibrated 
vertically by a sinusoidal loading (Figure 4.52a). This vibration will send out 
Rayleigh waves (Section 3.13), and the vertical motion of the ground surface will 
predominantly be due to these waves. This can be picked up by motion transduc
ers. The velocity of the Rayleigh waves can be given as 

where 
v, = jL (4.86) 

f = frequency of vibration of the plate and L = wavelength. 

If the wavelength L can be measured, the velocity of Rayleigh waves can easily 
be calculated. The wavelength is generally determined by the number of waves 
occurring at a given distance x. For a given frequency Ji the wavelength can be 
given as 

where n1 
= number of waves at a distance x for frequency Ji

(as shown in Figure 4.52b). 

(4.87) 

It was shown in Chapter 3 that the Rayleigh wave velocity is approximately equal 
to the shear wave velocity. So 

(4.88) 
It was also discussed in Chapter 3 that, for all practical purposes, the Rayleigh 

wave travels through the soil within a depth of one wavelength. Hence for a given 
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4 I Properties of Dynamically Loaded Soils 

---L---

Frequency = f
1 Dynamic load 

-----'-------v____,_L'\ __ \J_C'\ __ "-7.....---L __.., X 

(a) 

Rayleigh wave length: L1 > L2 
Frequency of vibration of plate: /1 < /2 

Distance, x

(b) 

Figure 4.52 Subsoil exploration by steady-state vibration 

frequency f, if the wavelength Lis known, the value of vs determined by the pre
ceding technique will represent the soil conditions at an average depth of L/2. 

Thus for a large value off, the value of Vs is representative of soil conditions at a 
smaller depth; and, for a small value off, the value of Vs obtained is representa
tive of the soil conditions at a larger depth. Figure 4.53 shows the results of wave 
propagation on a stratified pavement system obtained using this technique. 

11D SPECTRAL ANALYSIS OF SURFACE WAVE (SASW)

The Spectral Analysis of Surface Wave (SASW) method is a nonintrusive tech
nique developed from the steady-state vibration. The fundamentals of SASW 

method involve the generation, measurement, and analysis of Rayleigh waves 
at the test site. The shear wave velocity (Vs) profile of the test site can be derived 
from the measured Rayleigh wave velocity. 

Figure 4.52 shows a traditional configuration of equipment adopted in 
SASW testing with a two-channel recording system. The surface waves are 
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4.17 Spectral Analysis of Surface Wave (SASW) 

1000 ..--------.-------,.---......... --......... -----.

800
, L=0.68 m

/ 
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/ 

/ 

/ 

/ 

o�--___._--��--�---��

120 240 360 
Velocity, vr (mis)

Frequency 
(a)

480 

120
Velocity, vr (mis)

240 360
True 

480 Profile
o----------------

0.3 - - _Q.�
5 
_
m

_ - - - - -f� - o -!= = = -=
0.6

0.9
0 

I 1.1sm 

1.2 
- - - - - -

0 
- - - - - - - -

1.5 

1.8 

2.1 

2.4 .___ __ __,__ ___ ..___ __ __,__ ___ ....____.
Depth

(b)

Clay

Figure 4.53 vr as a function of frequency and depth determined by the steady
state vibration technique (after Heukelom and Foster 1960) 

Source: Heukelom, W., and Foster, C.R. (1960). "Dynamic Testing of Pavements," Journal of 

the Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SMl, Part 1, pp. 1-28. With 

permission from ASCE. 

generated by a dynamic vertical load ( such as by hammer or bulldozer) to the 
ground surface. All the equipment in SASW test is deployed on the ground sur
f ace, and thus no boreholes are required. The time delay between the two receiv
ers is a function of wave frequency (j) and is determined as

t(f) = </J(f)
2nf 

(4.89) 
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4 I Properties of Dynamically Loaded Soils 

where </J(/) = phase angle for a given frequency in radians. The surface wave
phase velocity ( v,) and the surface wave length (L) are calculated as 

d2 v, = t(f)
(4.90) 

L= 
v, (4.91) 

where d2 = distance between receivers. The v, and Lare calculated for each fre
quency at various receiver spacing d2 , and the resulting v, - L relationship is the
experimental dispersion curve (for example, see Figure 4.55). A dispersion curve 
is the correlation between the surface wave velocity and the wavelength ( or the 
equivalent frequency). 

The dispersion curves are then used to determine the shear wave velocity 
(Vs) profile. The Vs profile of the test site can be determined by iteratively fitting 
the experiment dispersion curve with a theoretical dispersion curve, the latter 
is derived from an assumed Vs profile. In this iterative procedure, the values of 
shear wave velocity and the thicknesses of each soil layer in the assumed vs

profile are updated by trial and error until a satisfactory theoretical dispersion 
curve that fits the experiment dispersion curve is obtained (for example, see 
Figure 4.55). The corresponding vs profile for the best-fit theoretical dispersion 
curve is determined to be the Vs profile for this test site. Figure 4.56 shows the 
shear wave velocity profile for the best-fit theoretical dispersion curve shown in 
Figure 4.55. 

The SASW method is typically used to obtain shear wave velocity profiles for 
earthquake site response, liquefaction analysis, soil compaction control, pave
ment evaluation, mapping subsurface stratigraphy, etc. The shear wave velocity 
profiles at greater depth require a high-energy and low-frequency wave source, 
while profiles with shallower depth need a low-energy and high-frequency wave 
source. 

Signal 

analyzer 

--l•---d1 ---1--•---dz--�•I 

Vertical 

receiver #2 

Figure 4.54 Standard configuration of equipment in SASW testing with a 
two-channel recording system 
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4.17 Spectral Analysis of Surface Wave (SASW) 

500 

- Experimental dispersion curve

o Theoretical dispersion curve

o ,_____._ ................................ _.....__ ............................ _ .................................. 

0.1 1 10 100 

Wavelength, L (m) 

Figure 4.55 Comparison between experimental and theoretical dispersion 

curves (adapted from Stokoe et al., 1994) 

Source: Based on Stokoe, K.H. II, Wright, S.G., Bay, J.A., and Roesset, J.M. (1994). "Characterization 

of Geotechnical Sites by SASW Method." Technical Review: Geophysical Characterization of Sites, 

/SSMFE Technical Committee 10, edited by R .D. Woods, Oxford, New Delhi, pp. 11-25. 

Shear wave velocity, v
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(mis) 
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Figure 4.56 Shear wave velocity profile determined from SASW (adapted from 
Stokoe et al., 1994) 

Source: Based on Stokoe, K.H. II, Wright, S.G., Bay, J.A., and Roesset, J.M. (1994). "Characterization 

of Geotechnical Sites by SASW Method." Technical Review: Geophysical Characterization of Sites, 

ISSMFE Technical Committee 10, edited by R .D. Woods, Oxford, New Delhi, pp. 11-25. 
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4 I Properties of Dynamically Loaded Soils 

IJD SOIL EXPLORATION BY .. SHOOTING UP THE HOLE;'

.. SHOOTING DOWN THE HOLE," AND .. CROSS-HOLE 

SHOOTING" 

Shooting Up the Hole 

In the technique of shooting up the hole, a hole is drilled into the ground and a 
detector is placed at the ground surf ace. Charges are exploded at various depths 
in the hole and the direct travel time of body waves (P or S) along the boundary 
of the hole is measured. Thus the values of v

P 
and vs of various soil layers can 

be easily obtained. There is a definite advantage in this technique, since it deter
mines the shear wave velocities of various soil layers. The refraction and reflec
tion techniques give only the P-wave velocity. However, below the groundwater 
table, the compression waves will travel through water. The first arrival for points 
below the water table will usually be for this type, and the wave velocity will gen
erally be higher than the compression wave velocity in soils. On the other hand, 
shear waves cannot travel through water, and the shear wave velocity measure 
above or below the water table will be the same. 

Shooting Down the Hole 

Shear wave velocity determination of various soil layers by shooting down the 
hole has been described by Schwarz and Musser (1972), Beeston and McEvilly 
(1977), and Larkin and Taylor (1979). Figure 4.57 shows a schematic diagram for 
the down-hole method of seismic waves testing as presented by Larkin and Tay
lor, which relies on measuring the time interval for SH-waves to travel between 
the ground surf ace and the subsurface points. A bidirectional impulsive source 
for the propagation of SH-waves is placed on the surface adjacent to a borehole. 

A horizontal sensitive transducer is located at a depth in the borehole. The depth 
of the transducer in varied throughout the length of the borehole. The shear 
wave velocity can then be obtained as 

where 

(4.92) 

z = depth below the ground surf ace 
t = time of travel of the shear wave from the surf ace impulsive 

source to the transducer 

During the process of field investigation, Larkin and Taylor (1979) deter
mined that the shear strains at depths of 3 m and 50 m were about 1 X 1 o-6 and 
0.3 X 1 o-6

, respectively. In order to compare the field and laboratory values of vs, 
some undisturbed samples from various depths were collected. The shear wave 
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4.18 Soil Exploration by "Shooting Up the Hole," "Shooting Down the Hole 

.· . _ - _ . _ .

Transducer 

• 

Bidirectional 

surface source 

of SH-wave 

Wave path 

Time to first shear 
wave arrival, t 

dz 
V=-
s dt 

o--+------------------- ----------

Soil layer 2 

Depth, z 

Figure 4.57 The down-hole method of seismic wave testing 

velocity of various specimens at a shear strain level of 1 X 10-6 was determined. 
A comparison of the laboratory and field test results showed that, for similar 
soils, the value of Vs(Iab) is considerably lower than that obtained in the field. For 
the range of soil tested, 

Vs(lab) :::::: 0.25 Vs(field) + 83 

Where Vs(lab) and Vs(field)are in meters per Second. 
Larkin and Taylor also defined a quantity called the sample disturbance fac

tor Sn: 

Sn = [Vs(field) ]
2 

Vs(lab) 
(4.93) 

The average value of Sn in Larkin and Taylor's investigation varied from about 
1 for Vs(field) = 140 m/s to about 4 for Vs(field) = 400 m/s. This shows that small dis
turbances in the sampling could introduce large errors in the evaluation of repre
sentative shear moduli of soils. 
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4 I Properties of Dynamically Loaded Soils 

Cross-Hole Shooting 

The seismic cross-hole survey is considered by many engineers to be the most 
reliable method of determining the dynamic shear modulus of soil. The tech
nique of cross-hole shooting relies on the measurement of SV-wave velocity. In 

this procedure of seismic surveying, two vertical boreholes at a given distance 
apart are advanced into the ground (Figure 4.58). Shear waves are generated by 
a vertical impact at the bottom of one borehole. The arrival of the body wave 
is recorded by a vertically sensitive transducer placed at the bottom of another 

borehole at the same depth. Thus 

L 
Vs

=

- (4.94) 

where t = travel time for the shear wave 

L = length between the two boreholes. 

The smallest possible borehole diameter should be used as small uncased 

boreholes are more stable than larger diameter holes. Even if casing is required, 
a small diameter borehole will cause less soil disturbance. Usually aluminium or 

PVC casing is used instead of steel casing. Void spaces around the casing must 
be filled with weak cement slurry grout. Spacing between the boreholes can be 2 

Oscilloscope Trigger 

. . ·: 

·- .· 

Input 

Vertical 
velocity transducer 

Vertical 
velocity 

transducer 

·· . . . 

� � . . ..._..._ ......... _. 

'Path of body wave '" 

Impulse rod 

Figure 4.58 Schematic diagram of cross-hole seismic survey technique 
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4.20 Cyclic Plate Load Test 

Soil profile 

Silty sand 

(SM) 

w=3-9% 
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(ML) 
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w = moisture content 

Figure 4.59 Shear wave velocity versus depth from cross-hole seismic survey 
(redrawn after Stokoe and Woods. 1972) 

Source: Based on Stokoe, K.H. II, Wright, S.G., Bay, J.A., and Roesset, J.M. (1994). "Characterization 

of Geotechnical Sites by SASW Method." Technical Review: Geophysical Characterization of Sites, 

ISSMFE Technical Committee 10, edited by R .D. Woods, Oxford, New Delhi, pp. 11-25. 

to 3 meters. The borehole spacing at the surface can be used as L, and for deeper 
boreholes (say more than 10 m in depth), inclinometers must be used to calculate L 

accurately as a small error in L can lead to large differences in estimated shear wave 
velocity. Figure 4.59 shows the plot of the shear wave velocity against depth for a 
test site obtained from the cross-hole shooting technique of seismic surveying. 

mJ CORRELATIONS FOR SHEAR WAVE VELOCITY, Vs

Several correlations between the shear wave velocity Vs and field standard pene
tration number N have been presented in the past. A few of these correlations are 
given in Table 4.4. Significant differences exist among the published relations that 
may be due to differences in geology along with the measurement of N and vs.

IE:J CYCLIC PLATE LOAD TEST

The cyclic field plate load test is similar to the plate bearing test conducted in 
the field for evaluation of the allowable bearing capacity of soil for foundation 
design purposes. The plates used for tests in the field are usually made of steel 
and are 25 mm thick and 150 mm to 762 mm in diameter. 
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4 I Properties of Dynamically Loaded Soils 

Table 4.4 Some Correlations between vs 
(mis) and N. 

Source 

Imai (1977) 

Ohta and Goto (1978) 

Seed and Idriss ( 1981) 

Sykora and Stokoe ( 1983) 

Okamoto et al. (1989) 

Pitilakis et al. (1999) 

Kiku et al. (2001) 

Jafari et al. (2002) 

Hasancebi and Ulusay (2006) 

Dikman (2009) 

Correlation 

All soils: Vs = 91N0.37?

Sand: Vs = 80.6N°.33 t 

Clay: Vs = 80.2N° ·292

All soils: Vs = 85.35N°·348 

All soils: Vs = 61.4N° ·5

Sand: Vs = 100.5N°·29 

Sand Vs = 125N° .3 

Sand: Vs = 145N°·178

Clay: Vs = l 32N° ·271

All soils: Vs = 68.3N° ·292

Sand: Vs = 22N°·77

Clay: Vs = 27 N°·73

All soils: Vs = 99N° ·309

Sand: Vs = 90.82N°.3t 9

Clay: Vs = 97.89N° ·269 

All soils: Vs = 58N° ·3s 

Sand: Vs = 73N°.3� 

Silt: Vs = 60N° ·36 

Clay Vs = 44N° ·48 

To conduct a test, a hole is excavated to the desired depth. The plate is placed 
at the center of the hole, and load is applied to the plate in steps-about one
fourth to one-fifth of estimated ultimate load-by a jack. Each step load is kept 
constant until the settlement becomes negligible. The final settlement is recorded 
by dial gauges. Then the load is removed and the plate is allowed to rebound. At 

the end of the rebounding period, the settlement of the plate is recorded. Fol
lowing that, the load on the plate is increases to reach a magnitude of the next 
proposed stage of loading. The process of settlement recording is then repeated. 

Figure 4.60 shows the nature of the plot of q versus settlement (s) obtained 

from a cyclic plate load test. Note that 

load on the plate, Q 
q= 

area of the plate, A 

Based on field test results, the magnitude of the spring constant k [See Chapter 2, 
Eq. (2.3)] and the shear modulus G of the soil can be calculated in the following 
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4.20 Cyclic Plate Load Test 

\ 

\ 

I 

I 

Figure 4.60 Nature of load settlement diagram for a cyclic plate load test 

manner. It is worth noting that in order to accurately reflect the nonlinear response 
of the soil, it would be necessary to establish the similar strains between the small 
scale footing and prototype footing. A number of cycles of loading of the plate 
may be needed to replicate the elastic condition in the soil under footing. 

Spring Constant k 

1. Referring to Figure 4.60, calculate the elastic settlement [se(l), sec2), ... ] for
each loading stage.

2. Plot a graph of q versus se, as shown in Figure 4.61.
3. Calculate the spring constant of the plate as

qA 
�late = 

Se 

(4.95) 
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e

Figure 4.61 

4. The spring constant for vertical loading for a proposed foundation can then
be extrapolated as follows (Terzaghi, 1955).

Cohesive soil:

k _ k (foundation width]foundation - plate 
plate width 

Cohesionless soil: 

k _ = k ( foundation width+ plate width J
2 

foundation plate 2 l . d hX p ate w1 t 

Shear Modulus, G 

It can be shown theoretically (Barkan, 1962) that 

where 

CZ =_q__=l.13 E -1-
Se 1-µ2 fl

Cz = subgrade modulus 
E = modulus of elasticity 
µ = Poisson's ratio 
A = area of the plate 

(4.96) 

(4.97) 

(4.98) 
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4.20 Cyclic Plate Load Test 

However, 

So 

or 

G= E 
2(1 + µ)

C = 2.26G(l + µ) _1_
z l-µ2 JA 

G = (1-µ)Czfl
2.26 

(4.99) 

The magnitude of Cz can be obtained from the plot of q versus se (Figure 4.61). 
With the known value of A and a representative value of µ, the shear modulus 
can be calculated from Eq. (4.99). In nonhomogenous soils, it may be desirable 
to conduct the test at different depths or one may use different plate sizes to 
reflect the change in soil stiffness with depth. Again, it should be noted that 
this test suffers from the same limitations as reported in traditional geotechnical 
engineering practice for the design of foundations. 

EXAMPLE4.5 

The plot of q versus s (settlement) obtained from a cyclic plate load test is 
shown in Figure 4.62. The area of the plate used for the test was 0.3 m2

• 

Calculate 

a. ¾late' and

b. shear modulus G (assumeµ= 0.35).

SOLUTION 

a. From Figure 4.62, the following can be determined.

Load per unit area, q (k.Pa) 

75 

150 

225 

300 

Elastic settlement, se (mm). 

0.53 

1.10 

1.50 

2.10 
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4 I Properties of Dynamically Loaded Soils 

100 200 300 q (kPa) 

5 

15 

20 

Figure 4.62 

Figure 4.63 shows a plot of q versus se . From the average plot, 

C2 = !L = 

300 
= 142.86 MN/m 3 

Se 0.0021 

From Eq. (4.95) 

kplate = qA = (142.86)(0.3) = 42.86 MN/m.
Se 

b. From Eq. (4.99)

G = 

(1- µ)C2 JA 
= 

(1- 0.35)(142.86)( Jo.3) 
2.26 2.26 

� 22.5 MPa 

This method can be extremely useful in sandy soils, provided it is being 
preceded by a boring program. But this test may not give good results if a 
weak stratum lies below the significant depth of test plate but within the 
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4.21 Test Procedures for Measurement of Moduli and Damping Characteristics 

Figure 4.63 

significant depth of the foundation. The procedure is costly, particularly if 
the ground water level is near the foundation and ground water lowering 
becomes necessary. 

Correlations for Shear Modulus and Damping Ratio 

Im TEST PROCEDURES FOR MEASUREMENT OF MODULI

AND DAMPING CHARACTERISTICS 

For design of machine foundations subjected to vibration, calculation of ground response 
during an earthquake, analysis of the stability of slopes during an earthquake, and other 
dynamic analysis of soil, it is required that the shear modulus and the damping ratio of 
the soil be known. The shear modulus G and the damping ratio D of soils are dependent 
on several factors, such as type of soil, confining pressure, level of dynamic strain, degree 
of saturation, frequency, and number of cycles of dynamic load application, magnitude of 
dynamic stress, and dynamic prestrain (Hardin and Black, 1968). 
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4 I Properties of Dynamically Loaded Soils 

From the preceding discussions in this chapter, it is obvious that a wide vari
ety of procedures, including laboratory and field tests, can be used to obtain 
the shear moduli and damping characteristics of soils. A summary of those 
test conditions, range of applicability, and the parameters obtained are given in 
Table 4.5. Based on these studies several correlations for estimation of G and D 
have evolved during the last 30 to 40 years. Some of these correlations are sum
marized in the following sections. 

In general , the shear-stress-versus-shear strain relationship for soils will be 
of the nature as shown in Figure 4.64. The following can be seen from this figure: 

1. The shear modulus G decreases with the increased level of shear strain.
2. At a very low strain level , the magnitude of the shear modulus is maximum

(that is, G = Gmax ),
3. The shear stress-versus-shear-strain relationship shown in Figure 4.64 can be

approximated as (Hardin and Drnevich, 1972)

r' r=------

1/Gmax + r' /rmax

where r = shear stress and y' = shear strain. 

(4.100) 

Table 4.5 Test Procedures for Measuring Moduli and Damping Characteristics 

General 
procedure 

Determination of hysteretic 
stress-strain relationships 

Forced vibration 

Free vibration tests 

Field wave velocity 

measurements 

Field seismic response 

After Seed and Idriss, 1970 

Test condition 

Triaxial compression 
Simple shear 

Torsional shear 

Longitudinal vibrations 

Torsional vibrations 
Shear vibrations-lab 

Shear vibration-field 

Longitudinal vibrations 

Torsional vibrations 
Shear vibration-lab 

Shear vibration-field 

Comparison waves 

Shear waves 
Rayleigh waves 

Measurement of motions at 

different levels in deposit 

Approximate 
strain range 

10-2 to 5% 
10-2 to 5% 

10-2 to 5% 

10-4 to 10-2 % 

10-4 to 10-2 % 

10-4 to 10-2 % 

10-4 to 10-2 % 

10-3 to 1% 

10-3 to 1% 
10-3 to 1% 

10-3 to 1% 

=5 X 10-4 % 

=5 x10-4 % 

=5 X 10-4 % 

Properties 
determined 

Modulus; damping 
Modulus; damping 

Modulus; damping 

Modulus; damping 

Modulus; damping 
Modulus; damping 

Modulus 

Modulus; damping 

Modulus; damping 
Modulus; damping 

Modulus 

Modulus 

Modulus 
Modulus 

Modulus; damping 

Source: Seed, H.B., and Idriss, I.M. (1970). "Soil Moduli and Damping Factors for Dynamic Response 

Analysis," Report No. EERC 70-10, Earthquake Engineering Research Center, University of Calofornia, 

Berkley. Reprinted by permission of the PEER Center, UC Berkeley. 
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Figure 4.64 Nature of variation of shear modulus with strain 

IEJ SHEAR MODULUS AND DAMPING RATIO IN SAND

Hardin and Richart (1963) reported the results of several resonant column tests 
conducted in dry Ottawa sand. The shear wave velocities Vs determined from 
some of these tests are shown in Figure 4.18. The peak-to-peak shear strain 
amplitude for these tests was 10-3 rad. From Figure 4.18 it may be seen that the 
values of vs are independent of the gradation, grain-size distribution, and also 
the relative density of compaction. However, Vs is dependent on the void ratio e
and the effective confining a O and can be expressed by the following empirical 
relations: 

and 

Vs = (19.7 - 9.06 e) ab14 for ao > 95.8 kPa 

vs = (11.36 - 5.35 e) a8·3 for a O < 95.8 kPa 

(4.101) 

(4.102) 
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4 I Properties of Dynamically Loaded Soils 

In Eqs. (4.101) and (4.102), the units of Vs and a0 are meters per second and 
Newtons per square meter (Pa), respectively. 

Several experimental results for shear wave velocity in extremely angular 
crushed quartz sands were also reported by Hardin and Richart (1963). Based on 
these results, the value of vs for angular sands can be expressed by the empirical 
relation 

Vs = (18.43 - 6.2e)O' �4

i i 

(m/s) 

(4.103) 

Based on the shear wave velocity relations presented here, the shear modulus 
of sands for low amplitudes of vibration can be given by the following relations 
(Hardin and Black, 1968): 

and 

G _ 6908(2 .17 - e)
2 

-112
max-

l 
O'o 

+e
(round-grained) 

G = 
3230(2·97 - e )2

6 112 (angular-grained) max 
l+e 

o 

where Gmax and ii O are in kPa. 

(4.104) 

(4.105) 

For a soil specimen subjected to a stress condition such that a1 # a2 # a3

(where a1 , 62 and 63 are the major, intermediate, and minor effective principal 
stresses, respectively), the average effective confining pressure is 

?i o = ½ ( a 1 + a 2 + a 3) = effective octahedral stress 

This value of a0 can be used in Eqs. (4.101)- (4.105). 
For field conditions at any given depth, 

where 

So 

o\ = effective vertical stress = av

if 2 = 0'3 = Koav

K0 
= at-rest earth pressure coefficient� 1 - sin </) 

(where </)= drained friction angle). 

a o = ½ [ ii v + 26 v ( 1 - sin</))] 

= 
av (3 - 2 sin </)) 
3 

(4.106) 
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4.22 Shear Modulus and Damping Ratio in Sand 

Several investigators (e.g ., Weissman and Hart, 1961; Richart, Hall, and 
Lysmer (1962); Drnevich, Hall, and Richart, 1966; Silver and Seed, 1969; Hardin 
and Drnevich, 1972; Seed and Idriss, 1970; Shibata and Soelarno, 1975; and Iwa
saki, Tatsuoka, and Takagi, 1976), have reported the results of shear modulus 
and damping ratio measurements using various types of test techniques. From 
these test results, it appears that the shear modulus at a given strain level can be 
expressed as (Seed and Idriss, 1970) 

(4.107) 

where G and a O are in kPa. 
For low strain amplitudes (r' < 10-4 %), the preceding equation will be 

(4.108) 

The magnitudes of K2 cmax) vary from about 30 for loose sands to about 7 5 for 
dense sands. Seed and Idriss (1970) recommended the following values of K2cmax)·

Relative density, 

Rv (%) 

Hence, 

30 

40 

45 

60 

75 

90 

K2cmax> 

34 

40 

43 

52 

61 

70 

G 
(4.109) 

Figure 4.65 shows the variation of F' with shear strain y'(¾) obtained from sev
eral studies. These values fall in a rather narrow band and, for all practical pur
poses, the average plot can be used for design and estimation purposes. Thus Eqs. 
(4.104), (4.105), (4.107), (4.108), and (4.109) can be combined to estimate the 
shear modulus at any required shear strain level . 

Studies by Hardin and Dmevich (1972) and Seed and Idriss (1970) show that the 
damping ratios for sands are affected by factors such as (a) grain-size characteristics, 

(b) degree of saturation, ( c) void ratio, ( d) earth pressure coefficient at rest ( K0 ), ( e)
angle of internal friction(¢), (f ) number of stress cycles (N'), (g) level of strain, and
(h) effective confining pressure. The last two factors, however, have the major effect
on the magnitude of the damping ratio. Figure 4.66 shows a compilation of past
studies (Seed et al. 1986) to determine D. For most practical cases the average plot of
the variation of D versus r' can be used for most calculation purposes.
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Figure 4.65 Variation of F' with shear strain for sands (after Seed et al., 1986) 

Source: SourceSeed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. (1986). "Moduli and 

Damping Factors for Dynamic Analyses of Cohesionless Soils," Journal of Geotechnical 

Engineering, ASCE, Vol. 112, No. GT l 1, pp. 1016-1032. With permission from ASCE. 
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Figure 4.66 Damping ratios for sands (after Seed et al.,1986) 

Source: Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. (1986). "Moduli and Damping 

Factors for Dynamic Analyses of Cohesionless Soils," Journal of Geotechnical Engineering, 

ASCE, Vol. 112, No. GT ll, pp. 1016-1032. With permission from ASCE. 
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4.22 Shear Modulus and Damping Ratio in Sand 

Based on tests on dry sands using a torsional simple shear device, Sherif, 
Ishibashi, and Gaddah (1977) proposed the following relationship for damping ratio. 

D
= 

5o - 0.087 <io (73.3F - 53.3)(y')0
·
3 (1.01- 0.046 logN) (4.110)

38 
where D

= damping ratio (%) 
<Jo = effective confining pressure (kPa) 
r' = shear strain (%) 
F = sphericity factor of the soil grains

N' = number of cycles of strain application 
The sphericity factor is defined as 

where 

C = 

D}o
g (D1o)(D60) 

Dw , D30 , D60 = diameters, respectively , through which 
10%, 30%, and 60% of the soil will pass 

S' 
1/f =-

s 

(4.111) 

(4.112) 

where S' and S are, respectively, the surf ace area of a sphere of the same volume 
as the soil particle and the actual surface area of the soil. 

EXAMPLE4.6 

The groundwater table in a normally consolidated sand layer is located at a depth 
of 3 m below the ground surf ace. The unit weight of sand above the groundwater 
table is 15.5 kN/m3. Below the groundwater table, the saturated unit weight of 
sand is 18.5 kN/m3

• Assuming that the void ratio and effective angle of friction 
of sand below the groundwater table are 0.6 and 36° , respectively, determine the 
damping ratio and the shear modulus of this sand at a depth of 7.5 m below the 
ground surface if the strain is expected to be about 0.12%. 

SOLUTION 

From Eq. (4.106) 

<JO =

<J 
v ( 3 - 2 sin ¢) 

3 
<Jv = 3(15.5) + 4.5(18.5 - 9.81) = 85.61 kPa 

<Jo =
85

·
61 

[3 - (2)(sin36)] = 52.06 kPa 
3 
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4 I Properties of Dynamically Loaded Soils 

When <p is equal to 36°, Rn is about 40 to 50%. Assuming Rn :=:::: 45%, K2 (max) :::::: 43. 
So, from Eq. (4.108) 

or 

Gmax = (218.82)( 43)(52.06)0
·
5 

= 67,890 kPa :::::: 67.9 MPa 

Referring to Figure 4.65, for r' = 0.12%, the value of F' is about 0.28. So 

G = F'Gmax = (0.28)(67.9) :::::: 19 MPa 

Referring to the average curve in Figure 4.66, for r' = 0.12% 

»�17%

mJ CORRELATION OF Gmax OF SAND WITH STANDARD

PENETRATION RESISTANCE 

The standard penetration test is used in soil-exploration programs in the United 
States and other countries. In granular soils the standard penetration numbers 
(N in blows/0.3 m) are widely used for the design of foundation. The standard 
penetration number can be correlated (Seed et al., 1986) in the following form to 
predict the maximum shear modulus: 

where 

t 

(kPa) 

t 

(kPa) 

CJo = effective confining pressure (kPa) 

(4.113) 

N60 = N-value measured in SPT delivering 60% of the theoretical 
free-fall energy to the drill rod 

Equation ( 4.113) is very useful in predicting the variation of the maximum shear 
modulus with depth for a granular soil deposit. 

EID SHEAR MODULUS AND DAMPING RATIO FOR GRAVELS

Seed et al. (1986) provided the experimental results of several well-graded gravels. 
An example of such a study on well-graded Oroville material is shown in Figure 
4.67. Based on several studies of this type, Seed et al. concluded that Eqs. (4.108) 
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4.24 Shear Modulus and Damping Ratio for Gravels 

and (4.109) can also be used to predict the variation of shear modulus with shear 
strain. However, the magnitude of K2cmax) for gravels ranges between 80 to 180 ( as 
compared to a range of 30 to 75 for sand). Thus, 

G = GmaxF' = 218.82F' K2(max){CY0 )0·5

i 

(kPa) 

i 

(kPa) 

The variation of F' with the level of shear strain is shown in Figure 4.68. 

(4.114) 

The equivalent damping ratio of gravelly soils determined in the laboratory 
from the hysteresis loops at the fifth cycle of each strain amplitude is shown in 
Figure 4.69. It can be seen that, for a given value of y', the equivalent damping 
ratio increases with the increase of the relative density Rn of the gravel. Seed 
et al. (1986) also observed that 

a. there is not significant effect of gradation on the equivalent damping ratios
of gravelly soil, and

Q.___ _____ .,___ ____ _____. _____ ____._ _____ _, 

10-4 10-3 10-2 10-1 1 

Cyclic shear strain, r' (%) 

Figure 4.67 Shear moduli of well-graded Oroville material (after Seed et al., 1986) 

Source: Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. (1986). "Moduli and Damping 

Factors for Dynamic Analyses of Cohesionless Soils," Journal of Geotechnical Engineering, 

ASCE, Vol. 112, No. GTl 1, pp. 1016-1032. With permission from ASCE. 
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4 I Properties of Dynamically Loaded Soils 

1.0 

0.8 

0.6 

F' 

0.4 

0.2 

0 

10-4 3 10-3 3 10-2 3 10-1 3 1 
Cyclic shear strain± r' (%) 

Figure 4.68 Variation of F' with shear strain for gravelly soils (after Seed 
et al., 1986) 

Source: Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. (1986). "Moduli and Damping 

Factors for Dynamic Analyses of Cohesionless Soils," Journal of Geotechnical Engineering, 

ASCE, Vol. 112, No. GTll , pp. 1016-1032. With permission from ASCE. 

b. the damping ratio is not significantly affected by the number of cycles at very
small strain amplitudes. However, it decreases to approximately three-fourths
of its original value after 60 cycles at any axial strain amplitude of+ 0.2%.

Seed et al. showed that the range and the average plot of the damping ratio D
with strain amplitude y' for gravelly soils is approximately the same as that for 
sands (Figure 4.66). 

24 �----------------� 

-.. Rn = 100% 
� 80% '-' 

.g 16 1------+-------+-------,--_65_3/c---10 

f:! 
0.1) 
� 
·a

] 8t------+-------+,_ _______ ---I 

� 
·3
a<
�

0 .___ ___ __.__ ___ ____._ ____ __.__ ___ __. 

10-4 10-3 10-2 10-1 1

Shear strain, r' (%) 

Figure 4.69 Effect of relative density on damping ratio of gravelly soils (after 
Seeds et al., 1986) 

Source: Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. (1986). "Moduli and Damping 

Factors for Dynamic Analyses of Cohesionless Soils," Journal of Geotechnical Engineering, 

ASCE, Vol. 112, No. GTll , pp. 1016-1032. With permission from ASCE. 
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4.24 Shear Modulus and Damping Ratio for Gravels 

Rollins et al. (1998) analyzed the results of several investigators between 1986 
and 1998 which were obtained from cyclic triaxial tests and large diameter cyclic 
torsional simple shear tests. Based on this analysis it was suggested that the rela
tionships for the best fit curves can be given as 

and 

G 1
-- - ----------

Gmax [1.2 + 16y'(l + 10-20r')] 

D(%) = 0.8 + 18(1 + 0.15y'-0-9)-0·75

where y' = cyclic shear strain (%) 

(4.115) 

(4.116) 

The variations of G/Gmax and D based on Eqs. (4.115) and (4.116), along with 
the standard deviation bounds, are given in Figures 4.70 and 4.71, respectively. 

1.0 f"llll:��-""""'""1-:;;;::::::--------,--------,-----, 

0.8 

0.2 

- - - - - - Eq. ( 4 .115)
Standard deviation bounds 

o�����-����-����-���--

10-4 10-3 10-2 10-1
Cyclic shear strain, y' (%) 

Figure 4.70 Variation of G/Gmax with y' for gravel-Eq. (4.115) 

2s.-------.....-----..------...-------. 

20 - - - - - Eq. (4.116)
,--... -- Standard deviation bounds 
� � 

� 

.s 
15 

/ � / 
lo. 

,, 
� 10 / 

·t
/ 

,, 

/ 
/ 

/ 

5 

----

0 
10-4 10-3 10-2 10-1 100 

Cyclic shear strain, r' (%) 

Figure 4.71 Variation of damping ratio with r' for gravel-Eq. (4.116) 
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4 I Properties of Dynamically Loaded Soils 

EXAMPLE 4.7 

Consider a gravel deposit. At a certain depth below the ground surface, given:

Vertical effective stress, ii'v = 7 6 kPa
Friction angle, </J = 38° 

Relative density, Rn
= 80%

Estimate the shear modulus and damping ratio at a cyclic shear strain level of
10-2 %. Use Eqs. (4.115) and (4.116). 

SOLUTION 

From Eq. (4.106)

o-0 = �' (3- 2sin¢) = (7
3
6)c3- 2sin3 8° ) = 44.81 kN/m2 

From Eq. (4.114)

From Figure 4.67 for y'::::::: 10-4 %, the value of K2 ::::::: 116. Hence,

Gmax = (218.82)(116)( 44.81)0·5 
= 169,915 kPa ::::::: 169.92 MPa

From Eq. (4.115)

G 1
--

-
--------

Gmax [1.2 + 16y'(l + 10-20r')]

Hence,

l ::::::: 0.685
[1.2 + (16)(0.01)(1 + 1 o-2oxO.Ol )] 

G = (169.92)(0.685) = 116.4 MPa

From Eq. (4.116)

D(%) = 0.8 + 18(1 + 0.15y'-0·9)-0·75 
= 0.8 + 18[1 + (0.15)(0.01)-0·9J-0·75 

= 3.89%
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4.25 Shear Modulus and Damping Ratio for Clays 

EID SHEAR MODULUS AND DAMPING

RATIO FOR CLAYS 

Hardin and Black (1968) and Hardin (1978) proposed the following empirical 
relationship for the shear modulus of clays at low amplitudes of strain, which 
includes the effects of soil plasticity and the overconsolidation ratio (OCR). Or 

where e = void ratio 

OCRK

Gmax =625---,Jpaao0.3 + 0.7e2 
(4.117) 

Pa = atmospheric pressure expressed in the same units (:::::::: 100 kPa) as Gmax

K = f (plasticity index, PI ) 

Following are the recommended values of K for use in the preceding equation. 

Plasticity index, PI (%) K 

0 0 

20 0.18 

40 0.30 

60 0.41 

80 0.48 

�100 0.5 

For field conditions 

fio = ½(fiv + 2Kofiv ) 

where av = effective vertical stress 
K0 = at-rest earth pressure coefficient 

For normally consolidated clays (Booker and Ireland, 1965) 

and 

K0 = 0.4 + 0.007 (PI) (for O <PI< 40%) 

K0 = 0.68 + 0.001 (PI - 40) (for 40% <PI< 80%) 

(4.118) 

(4.119) 

(4.120) 

For over consolidated soils, K0 can be approximated as (Mayne and Kulhawy, 
1982) 

Ko = (1- sin¢) OCR sin¢ (4.121) 
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4 I Properties of Dynamically Loaded Soils 
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Figure 4.72 Test results of Vucetic and Dobry (1991) - Variation of G/Gmax

andD 

Vucetic and Dobry (1991) used a large database and provided the variation 
of G/Gmax and D at various cyclic shear strain levels which are functions of PI 
and OCR. These variations are shown in Figure 4. 72. 

Correlation of Seed and Idriss 

Seed and Idriss (1970) collected the experimental results for shear modulus and 
damping ratio from various sources for saturated cohesive soils. Based on these 
results the variation of G/cu (where cu =undrained cohesion) with shear strain 
is shown in Figure 4. 73. Also, Figure 4. 74 shows the upper limit, average, and 
lower limit for the damping ratio at various strain levels. 
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4.25 Shear Modulus and Damping Ratio for Clays 
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Figure 4.73 In situ shear modulus for saturated clays (after Seed and Idriss, 1970) 

Source: Seed, H.B.
, 

and Idriss, I.M. (1970). "Soil Moduli and Damping Factors for Dynamic 

Response Analysis," Report No. EERC 70-10, Earthquake Engineering Research Center, 

University of Calofornia, Berkley. Reprinted by permission of the PEER Center, UC Berkeley. 

35 ..--------,-------.----------,-------...--------, 

Average 

0--------------------------�-----� 

10--4 10-3 10-2 10-1 1 10 
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Figure 4.74 Damping ratio for saturated clays (after Seed and Idriss, 1970) 

Source: Seed, H.B.
, 

and Idriss, I.M. (1970). "Soil Moduli and Damping Factors for Dynamic 

Response Analysis," Report No. EERC 70-10, Earthquake Engineering Research Center, 

University of Calofornia, Berkley. Reprinted by permission of the PEER Center, UC Berkeley. 
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4 I Properties of Dynamically Loaded Soils

EXAMPLE 4.8 

A soil profile is shown in Figure 4. 7 5a. Calculate and plot the variation of 
shear modulus with depth (for low amplitude of vibration) . 

Figure 4. 75a 

SOLUTION 

At any depth z

. ... � ....
- ·r -

Layer I, 3-r m 
Layer II, 1.5 m 

.·<Dry sand < 
. . . . . .  ··as;;; 2.65.

e=0.7 
¢>= 30°

Sand 
Gs= 2.65

e=0.6 

¢>= 33°

.a.w.T. 

Normally consolidated clay 
Gs= 2.78

Layer III, 1.5 m e = 1.22 
Liquid limit= 48 
Plastic limit = 23 

Rock 

(a) 

Not to 
scale 

where K0 is the coefficient of earth pressure at rest and o\ is the vertical 
effective pressure. For sands, 

Ko = 1- sin</)= 1- sin30° = 0.5 

In layer II, 

K0 = l - sin</)= 1 - sin 33° = 0.455 

For normally consolidated clays, 

Ko = 0.4 + 0.007(PI) for 0 <PI< 40% 

= 0.4 + 0.007( 48- 23) = 0.575 
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4.25 Shear Modulus and Damping Ratio for Clays 

Calculation of Effective Unit Weights 

z = 0-3.0m

= = 
Gsrw = 

(2.65) (9.81) = 15_29 kN/m3
r dry r eff

1 + e l + 0. 7 

z = 3.0-4.5 m 

(Gs + e)rw (
Gs -l

J Yetr = r sat -r w =

l + e
-r w = 

l + e Y w

= 
(2.65 -1)(9.81) = 10.12 kN/m3

1 +0.6 

z = 4.5 -6.0 m: 

= 
(Gs -l)rw (2.78 -1)(9.81) = 7_87 kN/m3Yetr 1 +e l + 1.22 

The following table can now be prepared. 

Depth z -

ii2 = <13 = Koii1 
-

0'1 O'o 
(m) (kPa) (kPa) (kPa) 

0 0 0 0 

1.5 15.29 X 1.5 = 22.94 11.47 15.29 

3.0 15.29 X 3 
(in layer I) =45.87 22.94 30.58 

3.0 45.87 20.87 29.20 
(in layer 11) 

4.5 45.87 + 10.12 X 1.5 
(in layer 11) =61.05 27.78 38.87 

4.5 61.05 35.10 43.75 
(in layer III) 

61.05 + 7.87 X 1.5 
6.0 = 72.86 41.89 52.21 

aEq. (4.104) 

hEq. (4.117). Note OCR = 1 

e G=Gmax 
(MPa) 

0.7 0 

0.7 34.348

0.7 48.568

0.6 57.518 

0.6 66.358

1.22 30.Slh

1.22 33.65b
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4 I Properties of Dynamically Loaded Soils 

The variation of G = Gmax with depth is plotted in Figure 4.69b. 

Figure 4. 75b 

EXAMPLE 4.9 

0 

G(MPa) 

28 56 84 
0 ...,..----,----r-----.---

1.5 

4.5 

6.0 

(b) 

At a given depth in a saturated clay layer, given: 

Vertical effective stress, cr v = 30 kPa 
Soil friction angle, ¢ = 28°

Liquid limit = 47 
Plastic limit = 27 
Void ratio, e = 0.92 
Overconsolidation ratio = 2 

Estimate the shear modulus and damping ratio at a cyclic shear strain of 
0.01 %. Use Eq. (4.117) and Figure 4.72. 

SOLUTION 

From Eq. (4.121) 

Ko = (1- sin<j>)OCRsin<!> = (1- sin28)(2)sin28 = 0.734 

O"o = !( O"v + 2KoO"v ) = 
O"v (1 + 2Ko ) = 

30 
(1 + 2 X 0.734) = 24.68 kPa

3 3 3 
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4.26 Shear Modulus and Damping Ratio for Lightly Cemented Sand 

FromEq. (4.117) 
OCRK 

Gmax = 625 2 ,J PaCJo0.3 + 0.7e 
Plasticity index = 47 - 27 = 20. Hence K = 0.18. Thus

(2)0.18
Gmax = (625)-----,j(l00)(24.68) = 39,412 kPa � 39.4 MPa

0.3 + (0.7)(0.92)2 

From Figure 4.72, for y' = 0.01 % 

_Q_ = 0.8 4 
Gmax 

Or 
G = (0.8 4)(39.4) � 33.1 MPa

Again, from Figure 4. 72 for y' = 0.01 % and PI = 20 
D�4% 

l!Im SHEAR MODULUS AND DAMPING RATIO

FOR LIGHTLY CEMENTED SAND 

Lightly cemented sand deposits are encountered in many parts of the world. The 
cementing material in the sand deposits is primarily calcium carbonate. More 
recently, the results of several research projects relating to the properties of 
lightly cemented sands have been published. From these studies it appears that 
the behavior of lightly cemented sands can be duplicated in the laboratory by 
mixing sand and Portland cement in required properties. The maximum sheer 
modulus can be expressed as (Saxena, Avramidis, and Reddy, 1988) 

where 
Gmax(CS) = Gmax(S) + �Gmax(C) (4.122) 

Gmaxccs) = maximum shear modulus of lightly cemented sand 
Gmax(s) = maximum shear modulus of sand alone 

�Gmax(C) = increase of maximum shear modulus due to cementa
tion effect 

According to Saxena, Avramidis, and Reddy, the magnitudes of Gmax(S) and 
�Gmax(C) can be obtained from the following empirical relationships. 

G = 428.2 ( )o.426(cr )o.s14max(S) 
0_3 + O. 7 e2 Pa 

0 

i 

(kPa) 
i i 

(kPa) (kPa) 
(4.123) 
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4 I Properties of Dynamically Loaded Soils 

where 0,, = atmospheric pressure in the same units as Gmax(S)

max(e) 
=-----(CC)0.88 <Jo /1G 172 

(
-

)

0.515e-0.13ee+0.285 

Pa (e - 0.5168) Pa 

(for CC< 2%) 
(4.124) 

/1G 773 
(

-
)

0.698e-0.04ee-0.2 
max(e) 

= -(CC)l.2 <Jo 

Pa e Pa (4.125) 
(for 2% <CC< 8%) 

where CC = cement content (in percent ) and e = void ratio. 
When using Eqs. ( 4.124) and ( 4.125), the units of Gmax(S), Pa , and a O need to be 
consistent . 

The damping ratio at low strain amplitudes (r' < 10- 3 %) can be expressed as 
(Saxena, Avramidis, and Reddy, 1988) 

where 

where 

Des = Ds +We 

Des = damping ratio of cemented sand (%) 
Ds = damping ratio of sand alone (%) 

(4.126) 

We = increase in the damping ratio due to cementation effect 

Ds = 0.94( � )
-o.Js

(4.127) 

MJc = 0.49( CC)L07 ( :: )
-0.36

(4.128) 

CC= cement content (in percent). The units of Pa and cr0 need to 
be consistent. 

EXAMPLE 4.10 

If a lightly cemented sand specimen is subjected to an effective confining pres
sure of 98 kPa, estimate the value of Gmaxces), given e = 0.7 and CC= 3%. 

SOLUTION 

From Eq. (4.123), 

G = 

428.2 ( )o.426 (a )o.s14max(S) 
0_3 + O. 7 e2 Pa 

0 
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Problems 

Given e = 0.7, Pa= 100 kPa, and CJ'o = 98 kPa, 

G = 
428.2 (1OO)o.426(98)0.s14max(S) 0.3 + (0. 7)(0. 7)2

= 65,805 kPa = 0.066 GPa 

From Eq. (4.125), 

or 

So 

�G 773 (
-

J
0.698e-0.04CC-0.2 

max(C) 
= _ ( CC)l.2 O" 0

Pa e Pa 

max(C) 
= -(3)1.2 _ �G 773 

( 98 )
o.698(0.1)-0.04(3)-0.2

100 0.7 100 
= (1104.3)(3.737)(0.997) = 4114.39 

�Gmax(C) = 411,439 kPa = 0.411 GPa 

Gmax(CS) = Gmax(S) + �Gmax(C) 
= 0.066 + 0.411 = 0.477 GPa = 477 MPa 

PROBLEMS 

4.1 A uniformly graded dry sand specimen was tested in a resonant column 
device. The shear wave velocity Vs determined by torsional vibration 
of the specimen was 231.65 mis. The longitudinal wave velocity deter
mined by using a similar specimen was 387.40 mis. Determine each of 
the following. 
a. Poisson's ratio
b. Modulus of elasticity (E) and shear modulus ( G) if the void ratio

and the specific gravity of soil solids of the specimen were 0. 5 and
2.65, respectively.

4.2 A clayey soil specimen was tested in a resonant column device (torsional 
vibration; free-free end condition) for determination of shear modulus. 
Given: length of specimen = 90 mm, diameter of specimen = 35.6 mm, 
mass of specimen = 170 g, frequency at normal mode of vibration 
(n = 1) = 790 Hz. Determine the shear modulus of the specimen in kPa. 

4.3 The Poisson's ratio for the clay specimen described in Problem 4.2 
is 0.52. If a similar specimen is vibrated longitudinally in a resonant 
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4 I Properties of Dynamically Loaded Soils 

column device (free-free end condition), what would be its frequency at 
normal mode of vibration ( n = l )? 

4.4 The results of a refraction survey in terms of time of first arrival (in mil
liseconds) and distance in meters is given below in tabular form. Assum
ing that the soil layers are perfectly horizontal, determine the P-wave 
velocities of the underlying soil layers and the thickness of the top layer. 

Distance Time of first arrival 

(m) (ms) 

7.5 49.08 

15.0 81.96 

23.0 122.8 

30.5 148.2 

45.5 174.2 

61.0 202.8 

76.0 228.6 

91.5 256.7 

4.5 Repeat Problem 4.4 for the following. 
Comment regarding the material encountered in the second layer. 

Distance Time of first Distance Time of first 

(m) arrival (ms) (m) arrival (ms)

10 19.23 100 125.82 

20 38.40 150 138.72 

30 57.71 200 152.61 

40 76.90 250 166.81 

60 115.40 300 178.31 

80 120.71 

4.6 Repeat Problem 4.4 with the following results. Also determine the thick-
ness of the second layer of soil encountered. 

Distance Time of first Distance Time of first 

(m) arrival (ms) (m) arrival (ms)

10 41.66 60 119.21 

15 62.51 70 128.11 

20 83.37 80 136.22 

30 91.82 90 141.00 

40 101.22 100 143.81 

50 110.16 120 152.00 
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Problems 

4. 7 The results of a reflection survey are given here. Determine the velocity 
of P-waves in the top layer and its thickness. 

Distance from Time for first arrival of 

shot point (m) reflected wave (ms) 

10 32.5 

20 39.05 

30 48.02 

40 58.3 

60 80.78 

100 128.55 

4.8 Ref er to Figure 4.46 for the results of the following refraction survey: 

Distance from point of Time of Distance from 

disturbance, first arrival point of disturbance, 

A (m) (ms) E(m) 

0 0 0 

6.0 20 6.0 

12.0 40 12.0 

18.0 60 18.0 

24.5 78.2 24.5 

36.5 92.8 36.5 

61.0 122.2 61.0 

85.5 149.8 85.5 

Point E 110.0 177.9 Point A 110.0 

Determine: 
a. the P-wave velocities in the two layers,
b. z' and z", and
c. the angle f3.

Time of 

first arrival 

(ms) 

0 

20 

40.1 

59.8 

79.7 

121.0 

167.2 

175.1 

180.2 

4.9 For a reflection survey refer to Figure 4.51, in which A is the shot point. Distance 
AC= AE = 180 m. The times for arrival of the first reflected wave at points C and 
E are 45.0 ms and 64.1 ms, respectively. If the P-wave velocity in layer 1 is 280 mis, 

determined f3 and z'. 

4.10 The results of a subsoil exploration by steady-state vibration technique are given 
here (Section 4.16): 
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4 I Properties of Dynamically Loaded Soils 

Distance from the plate Number of waves Frequency of vibration 

vibrated x (m) per second of the plate (Hz) 

10 41.00 900 

10 18.00 400 

10 9.00 200 

10 4.55 100 

10 2.65 90 

10 2.30 75 

10 1.77 60 

10 1.47 50 

Make necessary calculations and plot the variation of the wave velocity 
with depth. 

4.11 Figure P4.11 shows a soil profile with the standard penetration resis
tance (N) values with depth. Using the relationships given by Imai 
(1977; see Table 4.4), estimate the variation of the shear wave velocity 
(Vs ) with depth. 

Figure P4.11 

1.5 

3.0 

4.5 

7.5 

9.0 

. 
• .

Depth (m) 

. . . 

N 

0 8 

0 10 

0 12 

o 9

8

Sand 

Clay 

4.12 An angular-grained sand has maximum and minimum void ratios of 
1.1 and 0.55, respectively. Using Eq. (4.105), determine and plot the 
variation of maximum shear modulus Gmax versus relative density 
(Rn = 0 -100%) for mean confining pressures of 50, 100, 150, 200 and 
300 kPa. 

4.13 A 20-m-thick sand layer in the field is underlain by rock. The groundwa
ter table is located at a depth of 5 m measured from the ground surface. 
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Problems 

Determine the maximum shear modulus of this sand at a depth of 10 m 
below the ground surface. Given: void ratio = 0.6, specific gravity of 
soil solids = 2.68, angle of friction of sand= 36°. Assume the sand to be 
round-grained. Use Eq. (4.104) 

4.14 For a deposit of sand, at a certain depth in the field the effective vertical 
pressure is 120 kPa. The void ratio and the relative density are 0.72 and 
30° respectively. Determine the shear modulus and damping ratio for a 
shear strain levels of 5 X 10-2 %. Use eqs. (4.105) and (47.109)

4.15 A remolded clay specimen was consolidated by a hydrostatic pressure 
of 205 kPa. The specimen was then allowed to swell under a hydrostatic 
pressure of 105 kPa. The void ratio at the end of swelling was 0.8. If 
this clay is subjected to a torsional vibration in a resonant column test, 
what would be its maximum shear modulus ( Gmax )? These liquid and 
plastic limits of the clay are 58 and 28, respectively. 

4.16 Refer to the overconsolidated soil specimen in Problem 4.15. Estimate 
the shear modulus and damping ratio of the specimen at a cyclic shear 
strain of 0.01 %. 

4.17 Ref er to F igure P4.17. Given: 

H1 
= 2 m

H2
= 8 m

H3 = 3 m

e1 = 0.6 

e2 = 0.7 

Gs(l) = 2.68 

Gs(2) = 2.65 

</>i = 35°

</>2 = 30°

PI of clay = 32 

Estimate and plot the variation of the maximum shear modulus ( Gmax) 
with depth for the soil profile 

Figure P4.17 

Sand 

H2 
Gs(2) = 2.65

e2 = 0.7

</Ji=30°

Y
G.W.T. 

Normally consolidated clay 
Gs(J) = 2.73

Layer I 

Layer II 

H3 Moisture content= 50% Layer III l Plasticity index = PI = 32

Rock 
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4 I Properties of Dynamically Loaded Soils 

4.18 Repeat Problem 4.17 given 

H1 =H2 =H3 = 6 m

e1 = 0.88 

e2 = 0.68 

Gs(l) = Gs(2) = 2.66

</J1 = 28°

</J2 = 32°

PI of clay = 20 

4.19 The unit weight of a sand deposit is 16.98 kN/m3 at a relative density of 
60%. Assume that, for this sand 

</J = 30 + 0.15Rn

where </J is the drained friction angle and Rn is the relative density (in 
percent). At a depth of 6.09 m below the ground surface, estimate its 
shear modulus and damping ratio at a shear strain level of 0.01 %. Use 
the equations proposed by Seed and Idriss (1970). 

4.20 The results of a standard unconsolidated undrained triaxial test on a 
undisturbed saturated clay specimen are as follows: 

Confining pressure = 70 kPa 

Total axial stress at failure = 166.6 kPa 

Using the method proposed by Seed and Idriss (1970), determine and 
plot the variation of shear modulus and damping ratio with shear strain 
(strain range 10-3 % to 1%). 

4.21 For Example 4.10, determine the damping ratio of the cemented sand. 
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Foundation Vibration 

Bl INTRODUCTION

In Chapter 2 (Figure 2.1 ), it was briefly mentioned that foundations supporting 

vibrating equipment do experience rigid body displacements. The cyclic displace
ment of a foundation can have six possible modes. They are 

1. translation in the vertical direction;
2. translation in the longitudinal direction;
3. translation in the lateral direction;
4. rotation about the vertical axis (that is, yawing);

5. rotation about the longitudinal axis (that is, rocking); and
6. rotation about the lateral axis (that is, pitching).

In this chapter, the fundamentals of the vibration of foundations, in various
modes, supported on an elastic medium will be developed. The elastic medium 

that supports the foundation will be considered to be homogeneous and iso
tropic. In general, the behavior of soils departs considerably from that of an 
elastic material; only at low strain levels may it be considered as a reasonable 

approximation to an elastic material. Hence, the theories developed here should 
be considered as applicable only to the cases where foundations undergo low 
amplitudes of vibration. 

lfl VERTICAL VIBRATION OF CIRCULAR FOUNDATIONS

RESTING ON ELASTIC HALF-SPACE-HISTORICAL 

DEVELOPMENT 

In 1904, Lamb studied the problem of vibration of a single vibrating force acting 
at a point on the surface of an elastic half-space. This study included cases in 
which the oscillating force R acts in the vertical direction and in the horizon
tal direction, as shown in Figure 5.la and b. This is generally referred to as the 

dynamic Boussinesq problem. 
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5.2 Vertical Vibration of Circular Foundations Resting on Elastic Half-Space 

In 1936, Reissner analyzed the problem of vibration of a uniformly loaded 
flexible circular area resting on an elastic half-space. The solution was obtained 
by integration of Lamb's solution for a point load. Based on Reissner's work, the 
vertical displacement at the center of the flexible loaded area (Figure 5.2a) can 
be given by 

where 

(5.1) 
g eirot

z =
0 (Ji +ifi) 
Gro 

Q0 = amplitude of the exciting force acting on the foundation 
z = periodic displacement at the center of the loaded area 

m = circular frequency of the applied load 
r0 = radius of the loaded area 
G = shear modulus of the soil 
Q = exciting force, which has an amplitude of Q0

Ji,Ji = Reissner's displacement functions 

The displacement functions Ji and Ji are related to the Poisson's ratio of the 
medium and the frequency of the exciting force. 

· ....
. 

:, .. . 

::: : ......... : . 

R 

G = shear modulus 
p= density 
µ = Poisson's ratio 

(a) 

R 

. .  \.· :--.:-:.\. · - :·.. . . . . . 
. 
. ' . 

· · · -

. . .. . . 
.. ". ·., .... · .. _ . ... : : �- ·.: ·:· ....

G = shear modulus 
p= density 
µ = Poisson's ratio 

(b) 

Figure 5.1 Vibrating force on the surface of an elastic half-space 
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5 I Foundation Vibration 

.. - ' : . . . . . : . ... . . . : .

G 
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µ 

G 

p 

µ 

Total load= Q = Q0eiwt 

· ·  . . .. .  : . . . . . · : . .. . . · ·., . .. 

i-.----ro� 

(a) 

Q ei(wt+a)
Load per unit area = 0 

,1,,'lro

Weight= W
w 

Mass=m= -
g 

z 

(b) 

Figure 5.2 (a) Vibration of a uniformly loaded circular flexible area; 
(b) flexible circular foundation subjected to forced vibration

Now, consider a flexible circular foundation of weight W ( mass = m = WI g) 
resting on an elastic half-space and subjected to an exciting force of magnitude 
of Q0 e

i(rot+a), as shown in Figure 5.2b. (Note: a is the phase difference between 
the exciting force and the displacement of the foundation.) 

Using the displacement relation given in Eq. (5.1) and solving the equation 
of equilibrium of force, Reissner obtained the following relationships: 

where 

A= Qo Z 
z Gro 

A
z = the amplitude of the vibration 

Z = dimensionless amplitude 

f
?

+ fl

b = dimensionless mass ratio 

(5.2) 

(5.3) 

(5.4) 
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5.2 Vertical Vibration of Circular Foundations Resting on Elastic Half-Space 

p = density of the elastic material 

y = unit weight of the elastic material 

(for this problem, it is soil) 

a0 = dimensionless frequency 

=mro IP= mro
�G Vs 

(5.5) 

Vs = velocity of shear waves in the elastic material on which 

the foundation is resting 

The classical work of Reissner was further extended by Quinlan (1953) and 
Sung (1953). As mentioned before, Reissner's work related only to the case of 
flexible circular foundations where the soil reaction is uniform over the entire 
area (Figure 5.3a). Both Quinlan and Sung considered the cases of rigid circu
lar foundations, the contact pressure of which is shown in Figure 5.3b, flexible 
foundations (Figure 5.3a), and the types of foundations for which the contact 
pressure distribution is parabolic, as shown in Figure 5.3c. The distribution of 
contact pressure q for all three cases may be expressed as follows.

For flexible circular foundations (Figure 5.3a):

Q ei(mt+a)
q = 

0 

2
(for r < r0 )

1tro 

For rigid circular foundations (Figure 5.3b):

Qo ei(mt + a)
q = --;:::::=== (for r < ro) 

21tro �ro2 - r2 

(5.6) 

(5.7) 

For foundations with parabolic contact pressure distribution (Figure 5.3c):

where 

2(ra2 _ r2 ) Qo ei(mt +a)
q = 

4
(for r < r0 )

1tro 
(5.8) 

q = contact pressure at a distance r measured from the center of 
the foundation 

Quinlan derived the equations only for the rigid circular foundation; however,
Sung presented the solutions for all the three class described. For all cases, the 
amplitude of motion can be expressed in a similar form to Eqs. (5.2), (5.3), (5.4), 
and (5.5). However, the displacement functions Ji and h. will change, depending 
on the contact pressure distribution. 
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Figure 5.3 Contact pressure distribution under a circular foundation of radius ro 

Foundations, on some occasions, may be subjected to a frequency-dependent 
excitation, in contrast to the constant-force type of excitation just discussed. 
Figure 5.4 shows a foundation excited by two rotating masses. The amplitude of 
the exciting force can be given as 

(5.9) 

where m1 = total of the rotating masses 
OJ = circular frequency of the rotating masses 
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5.2 Vertical Vibration of Circular Foundations Resting on Elastic Half-Space 

For this condition, the amplitude of vibration Az may be given by the relation 

f
?

+ fl (5.10) 

From Eq. (5.5) 

or 
ao =mr0� 

2 
a1;G 

w =
--

pra2 
(5.11) 

Substituting Eq. (5.11) into (5.10), one obtains 

.('
1
2 + .('

2
2 

___ 1_1 __ 1 _: ___ 
= 

m1e Z'
(1- ba1;fi)2 

+ (ba1;h)2 prJ 
(5.12) 

where Z' = dimensionless amplitude 

J;
2 + fl

-a2- 0 (5.13) 

Figures 5.5 and 5.6 show the plots of the variation of the dimension
less amplitude with a0 (Richart, 1962) for rigid circular foundations (for 
µ=Poisson's ratio= 0.25 and b = 5, 10, 20, and 40). 
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Figure 5.4 Foundation vibration by a frequency-dependent exciting force 
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5 I Foundation Vibration 

Effect of Contact Pressure Distribution and Poisson's Ratio 

The effect of the contact pressure distribution on the nature of variation of 
the nondimensional amplitude Z' with a0 is shown in Figure 5. 7 (for b = 5 and 
µ = 0.25). As can be seen, for a given value of a0 , the magnitude of the amplitude 
is highest for the case of parabolic pressure distribution and lowest for rigid bases. 

For a given type of pressure distribution and mass ratio (b), the magnitude 
of Z' also greatly depends on the assumption of the Poisson's ratio µ. This is 

shown in Figure 5.8. 

Variation of Displacement Functions f1 and '2 

As mentioned before, the displacement functions are related to the dimension
less frequency a0 and Poisson's ratioµ. In Sung's original study, it was assumed 
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Figure 5.5 Plot of Z versus a0 for rigid circular foundation (from Richart, 1962) 

Source: Richart, F.E., Jr. (1962). "Foundation Vibrations," Transactions, ASCE, Vol. 27, Part 1, 

pp. 863-898. With permission from ASCE. 
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Figure 5.6 Variation of Z' with a0 for rigid circular foundation (redrawn from 
Richart, 1962) 

Source: Richart, F.E., Jr. (1962). "Foundation Vibrations," Transactions, ASCE, Vol. 27, Part 1, 

pp. 863-898. With permission from ASCE. 

that the contact pressure distribution remains the same throughout the range of 
frequency considered; however, for dynamic loading conditions, the rigid-base 

pressure distribution does not produce uniform displacement under the foun

dation. For that reason, Bycroft ( 19 56) determined the weighted average of the 
displacements under a foundation. The variation of the displacement functions 

determined by the study is shown in Figure 5.9. 
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Figure 5.7 Effect of contact pressure distribution on the variation of Z' with 

a0 (redrawn from Richart and Whitman, 1967) 

Source: Richart, F.E., Jr., and Whitman, R.V. (1967). "Comparison of Footing Foundation 

Tests with Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, 

pp. 143-167. With permission from ASCE. 
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Figure 5.8 Effect of Poisson's ratio on the variation of Z' with a0 (redrawn 
from Richart and Whitman, 1967) 

Source: Richart, F.E., Jr., and Whitman, R.V. (1967). "Comparison of Footing Foundation 

Tests with Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, 

pp. 143-167. With permission from ASCE. 
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Figure 5.9 Variation of the displacement functions with a0 andµ 

Ill ANALOG SOLUTIONS FOR VERTICAL VIBRATION OF

FOUNDATIONS 

Hsieh's Analog 

Hsieh (1962) attempted to modify the original solution of Reissner in order 
to develop an equation similar to that for damped vibrations of single-degree 
free system [Eq. (2. 72)]. Hsieh's analog can be explained with reference to 
Figure 5.10. Consider a rigid circular weightless disc on the surface of an elas
tic half space. The disc is subjected to a vertical vibration by a force 

The vertical displacement of the disk can be given by Eq. (5.1) as 
Reimt 

z = 0 (Ji + ifi)

Now, 
Gro 

dz - Poroeimt

(;-r_ - -r) -- 91 J2
dt Gro 

(5.14) 

(5.15) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



5 I Foundation Vibration 

or 

dz P0m 
fimz - h -d = -G 

(f? 
+ fl ) el0)1

t r0

Since P = P0 e imt, the preceding relationship can be written as 

or 

So 

I' f dz _ Pm ( 1'2 1'2)
nmz- 2--- 11 + 12 

dt Gr0 

p 
[ G ( 

Ji J] [( Gro 
) ( 

-h J] dz 
= ( 

ro) 
Ji2 + fl 

z 
+ ro Ji2 + fl dt 

(5.16) 

Now consider a rigid circular foundation having a mass m and radius r0

placed on the surf ace of the elastic half-space (Figure 5 .1 Ob). The foundation 
undergoes vibration by a periodic force 

(5.17) 

For dynamic equilibrium 
mz=Q-P (5.18) 

Combining Equations (5.16), (5.17), and (5.18) 

I mz + Cz:i + kzz = Qoe imt I (5.19) 

The preceding relationship is an equivalent mass-spring-dashpot model sim
ilar to Eq. (2.72). However, the spring constant kz and the dashpot coefficient Cz

are frequency dependent. 

Lysmer's Analog 

A simplified model was also proposed by Lysmer and Richart (1966), in which 
the expressions for kz and cz were frequency independent. Lysmer and Richart 
(1966) redefined the displacement functions in the form 

f fi+ifi 
F= (1�µ) = (1�µ) =Fi +if'i (5.20) 

The functions Fi and F;, are practically independent of Poisson's ratio, as 
shown in Figure 5.11. 
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Figure 5.10 Hsieh's analog 
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The term mass ratio [Eq. (5.4)] was also modified as 

where B
z 

= modified mass ratio. 

(5.21) 

In this analysis, it was proposed that satisfactory results can be obtained 
within the range of practical interest by expressing the rigid circular foundation 
vibration in the form 

(5.22) 
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Figure 5.11 Plot of Fi and -Fi against a0 for rigid circular foundation 
subjected to vertical vibration (from Lysmer and Richart, 1966) 

Source: Lysmer, J., and Richart , F.E., Jr. (1966). "Dynamic Response to Footings to Vertical 

Loading ," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SMl, 

pp. 65-91. With permission from ASCE. 

where 

k
2 

= static spring constant for rigid circular foundation 

4Gro 

l-µ

3.4ra2 � 
Cz = --'\JvP 

l-µ

(5.23) 

(5.24) 

In Eqs. (5.23) and (5.24) the relationships for k2 and c2 are frequency 
independent. Equations (5.22), (5.23), and (5.24) are referred to as Lysmer's analog. 
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5.4 Calculation Procedure for Foundation Response-Vertical Vibration 

BJ CALCULATION PROCEDURE FOR FOUNDATION

RESPONSE-VERTICAL VIBRATION 

Once the equation of motion of a rigid circular foundation is expressed in the 
form given in Equation (5.22), it is easy to obtain the resonant frequency and 
amplitude of vibration based on the mathematical expressions presented in 
Chapter 2. The general procedure is outlined next. 

A. Resonant Frequency

1. Calculation of natural frequency. From Eqs. (2.6) and (2.18),

fn = _l {k; = _l
( 

4Gro )_!_ 
2n �-;;; 2n 1 - µ m 

2. Calculation of damping ratio Dz. From Eq. (2.47a), 

From Eq. (2.47b) 

Ccz 

= 2� = 2 ( 
4Gro )cm) 
l-µ 

= 8 ( Gro )( 
BzprJ 

J = 8r0
2 �

l-µ l-µ l-µ 

3.4ra2 
JGp 

_ c _ l-µ D --------

z 

8 2 Ccz 
ro 1GB 

1 
'\J zP 

-µ

0.425 

(5.25) 

(5.26) 

(5.27) 

3. Calculation of the resonance frequency (that is, frequency at maximum dis
placement). From Eq. (2.86),for constant force-type excitation,

fm = fn�l - 2D; = [-1 
( 

4Gro )_!_] '1- 2(0.425)
2 

21t' l-µ m \ $: (5.28) 

It has also been shown by Lysmer that, for Bz > 0.3, the following approximate
relationship can be established: 

(5.29) 
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5 I Foundation Vibration 

For rotating mass-type excitation [Eq. (2.98)] 

Lysmer's corresponding approximate relationship for fm is as follows: 

f, =(-1 )( {Q)(l) � 
m 21t � p ro � Bz - 0.45

B. Amplitude of Vibration at Resonance

(5.30) 

(5.31) 

The amplitude of vibration A
z 

at resonance for constant force-type excitation can 
be determined from Eq. (2.87) as 

where 

and 

A -(QoJ( 1 Jz(resonance) - kz 2Dz )l _ D; 

k = 4Gr0

z 
l-µ

D = 0.425
z Jii: 

Substitution of the relationships for kz and Dz in Eq. (5.32) yields 

A _ Qo (1 - µ) Bz 
z(resonance) - 4Gro 0.85.J Bz - 0.18

(5.32) 

(5.33) 

The amplitude of vibration for rotating mass-type vertical excitation can be 
given as [see Eq. (2.99)] 

where 

u l
Az(resonance) 

= 
m 2Dz)l _ D;

U = m
1 
e (m

1 
= total rotating mass causing excitation), or 

A _ 
m1e Bz 

z(resonance) - ----;;; 0_85.JBz _ 0.18
(5.34) 
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5.4 Calculation Procedure for Foundation Response-Vertical Vibration 

C. Amplitude of Vibration at Frequencies Other Than Resonance

For constant force-type excitation, Eq. (2.82) can be used for estimation of the 
amplitude of vibration, or 

Qo 

A= kz

z 

�[l-(co 2/co;)]
2 

+4D;(co 2/co;)

The relationships for kz and Dz are given by Eqs. (5.23) and (5.27) and 

w.
=

l 

(5.35) 

(5.36) 

Figure 5.12 shows the plot of Az/(Q0/kz ) versus (co/con )- So, with known val
ues of Dz and (co/con ), one can determine the value of Az/(Q0/kz ) and, from that, 
Az can be obtained. 
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D=O 

4 t------+------t-t�-1-t----+-------t 
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� 6 
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0.5 1.0 1.5 2.0 

Figure 5.12 Plot of Az/(Qo/kz ), 0/(M
y
/k0 ), Ax/(Qo/kx ), and a/(To/ka ) against 

(co/con ) for constant force-type vibrator (Note: D = D z for vertical vibration, 
D = D0 for rocking, D = Dx for sliding; D = Da for torsional vibration.) 
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5 I Foundation Vibration 

In a similar manner, for rotating mass-type excitation, Eq. (2.95) can be used 
to determine the amplitude of vibration, or 

A = 

(m1e/m)(0J/0Jn )2 

z 

� [ 1 - c OJ 2 i OJ;) r + 4D; c OJ 2 i OJ;) 
(5.37) 

Figure 5.13 shows a plot of Azl(m1elm) versus OJ/OJn , from which the magni
tude of Az can also be determined. 

The procedure just described relates to a rigid circular foundation having a 
radius of r0 • If a foundation is rectangular in shape with length L and width B,

it is conventional to obtain an equivalent radius, which can then be used in the 
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Figure 5.13 Plot of Az f(U Im), 0/(m,ez'I Io), Ax f(m,elm), a/[m,eC x )jizz ] 

against ( OJ/ OJn ) for rotating mass-type excitation (Note: D = Dzfor vertical 
vibration, D = D0for rocking, D = Dx for sliding; D = Da for torsional vibration.) 
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5.4 Calculation Procedure for Foundation Response-Vertical Vibration 

preceding relationships. This can be done by equating the area of the given foun
dation to the area of an equivalent circle. Thus 

nra2 = BL 

or 

ro = � (5.38) 

where r0 
= radius of the equivalent circle 

The procedure for transforming areas of any shape to an equivalent circle
of the same area gives good results in the evaluation of foundation response.
Dobry and Gazetas (1986) demonstrated that any shape can be transformed to
an equivalent circle and demonstrated the validity of this method through com
parison with experimental results. 

It is obviously impossible to eliminate vibration near a foundation. However,
an attempt can be made to reduce the vibration problem as much as possible.
Richart (1962) compiled guidelines for allowable vertical vibration amplitude
for a particular frequency of vibration, and this is given in Figure 5 .14. The data
presented in F igure 5.14 refer to the maximum allowable amplitudes of vibra
tion. These can be converted to maximum allowable accelerations by 

Maximum acceleration = (maximum displacement)m2

For example, in Figure 5.14, the limiting amplitude of displacement at an
operating frequency of 2000 cpm is about 0.127 mm. So the maximum operating
acceleration for a frequency of 2000 cpm is 

( 0.127 mm) [ 
(l1t)

��OOO) 
J = 5570 mm/s2

In the design of machine foundations, the following general rules may be
kept in mind to avoid possible resonance conditions: 

1. The resonant frequency of foundation-soil system should be less than half
the operating frequency for high-speed machines (that is, operating fre
quency� 1000 cpm). For this case, during starting or stopping the machine
will briefly vibrate at resonant frequency. 

2. For low-speed machines (speed less than about 350-400 cpm), the resonant
frequency of the foundation-soil system should be at least two times the
operating frequency. 

3. In all types of foundations, the increase of weight will decrease the resonant
frequency. 

4. An increase of r0 will increase the resonant frequency of the foundation. 
5. An increase of shear modulus of soil (for example, by grouting) will increase

the resonant frequency of the foundation. 
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Figure 5.14 Allowable vertical vibration amplitudes (from Richart, 1962) 

Source: Richart, F.E., Jr. (1962). "Foundation V ibrations," Transactions, ASCE, Vol. 27, Part 1, 

pp. 863-898. With permission from ASCE. 

EXAMPLE 5.1 

A foundation is subjected to a constant force-ty pe vertical vibration. Given 
the total weight of the machinery and foundation block, W = 680 kN; unit 
weight of soil, y = 18.5 kN/m3; µ = 0.4; G = 20700 kPa ; the amplitude of the
vibrating force, Q0 = 7 kN; the operating frequency, f = 180 cpm; and that the 
foundation is 6 m long and 2 m wide: 

a. Determine the resonant frequency. Check if

hesonance 
> 2 

/operating 

b. Determine the amplitude of vibration at resonance.
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5.4 Calculation Procedure for Foundation Response-Vertical Vibration 

SOLUTION: 

a. This is a rectangular foundation, so the equivalent radius [Eq. (5.38)] is

ro = � = /2�6 ) 
= l.954 m

The mass ratio [Eq. (5.21)] 

Bz =C�µ)(P:6 )=(1�µ)(�) 
-c-t

4 

x 18.5 !
8

�9543 J
= 0.739 

From Eq. (5.29), the resonant frequency is 

Hence, 

fm =(2�)(tJ(�)� 
0.739-0.36 

0.739 

/resonance 
= 

366.6 
= 2_04 > 2 

/operating 180 
b. From Eq. (5.33)

A _ Qo (1 -µ) Bz
z(resonance) - 4Gro 0.85)Bz -0.18 

[ 
(7)(0.6) 

][ 
0.739 

] - ( 4)(20, 700)(1.954) (0.85)�0.739- 0.18 
= 0.00003 m = 0.03 mm

EXAMPLE 5.2 

Figure 5 .15a shows a single-cylinder reciprocating engine. The data for the engine 
are as follows: operating speed= 1500 cpm; connecting rod (r 2) = 0.3 m; crank 
(r1 ) = 75 mm; total reciprocating weight= 54 N; total engine weight= 14 kN . 
Figure 5.15b shows the dimensions of the concrete foundation for the engine. 
The properties of the soil are as follows: r = 18.5 kN/m 3; G = 18,000 kPa; and 
µ = 0.5. Calculate: 

a. primary and secondary unbalanced forces at operating frequency (refer to
Appendix A);
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Figure 5.15 

b. the resonance frequency; and

(a) 

(b) 

c. the vertical vibration amplitude at resonance.
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5.4 Calculation Procedure for Foundation Response-Vertical Vibration 

SOLUTION: 

a. The equations for obtaining the maximum primary and secondary unbal
anced forces for a single cylinder reciprocating engine are given in Appen
dix A. From Eqs. (A.9) and (A.10 )
Primary unbalanced force = mrecr1ro2

54 
( 

75 
J(

27t X 1500
]

2 

- (1000 ) (9.81) 1000 60

= 10.19 kN 

2 2 

Secondary unbalanced force = 
mrec'i OJ

r2

So 

.2_ = 0.075 = 0.25 
r2 0.3 

Secondary force = (primary force ) ( ;: ) = (10.19 ) (0.25)

= 2.55 kN

b. From Eq. (5.38),

r0
= � =

(1.5)
;

2-5) 
= 1.093 m

The mass ratio is 

Total weight is W =weight of foundation+ engine. Assume the unit weight 
of concrete is 23.58 kN/m3

• So 
W = (l .5 X 2.5 X 1.5) (23.58)  + 14 = 146.64 kN 

B = (
1-0.5

J[ 
146.64

] =
o_759

2 4 (18.5)(1.093)3

The resonant frequency [Eq. (5.31)] is 

f, = (-1 J( {Q)(!) �
m 21t �p ro �B2

-0.45

= (-1 
J[ 

(18, 000 ) (9.81) 
]( 

1 
J 21t 18.5 1.093 

= 24.28 Hz = 1457 cpm 

0.9 
0.759 -0.45 
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5 I Foundation Vibration 

c. From Eq. (5.34),

A _ m1e Bz 
z(resonance) - -;;; 0_85� Bz _ O. l8

At 1500 cpm, the total unbalanced force = primary force + secondary force
= 10.19 + 2.55 = 12.74 kN.

n = n ( 
1457 

)
2 

= (12 74)( 
1457 

)
2 

�0(1457 cpm) �0(1500 cpm) 1500
· 

1500 
= 12.02 kN 

Qo(1457cpm) = m1em2 = 12.02 kN
Therefore, 

_ 12.02 . _ 21t(1457) -152 58 d/ . _ 12.02m1e 
- m2 '

OJ 

- 60 
- . ra s, m1e 

- (152.58)2

Hence 

A -[
12.02/(152.58)2

]( 
0.759 

J z(resonance) - 146.64/9.81 0.85�0.759 - 0.18 

= 0.0000405 m = 0.0405 mm

ID ROCKING VIBRATION OF FOUNDATIONS

Theoretical solutions for foundations subjected to rocking vibration have been pre
sented by Arnold, Bycroft, and Wartburton (1955) and Bycroft (1956). For rigid cir
cular foundations (Figure 5.16), the contact pressure can be described by the equation 

3M
y

rcosa . t 

q = ----;:::===ew1 

21trJ �ro2 
- r2 

where q = pressure at any point defined by point a on the plan
M

Y 
= the exciting moment about the y axis = M 

y
e imi

Hall (1967) developed a mass-spring-dashpot model for rigid circular foundations 
in the same manner as Lysmer and Richart ( 1966) developed for vertical vibration. 
According to Hall, the equation of motion for a rocking vibration can be given as 

where 

I Io 0 + Ce 0 + ke 0 = M
y
e imt I (5.39) 

0 = rotation of the vertical axis of the foundation at any time t
/0 = mass moment of inertia about they axis (through its base)

= � ( � + h:) (5.40)
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5.5 Rocking Vibration of Foundations 
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Figure 5.16 Rocking vibration of rigid circular foundation 

where 

where 

Wo = weight of the foundation 
g = acceleration due to gravity 
h = height of the foundation 

k 
. . SGrJ 

e = static spnng constant = ---

3(1-µ) 

d h ffi 
. 0.8r0

4 JG 
ce = as pot coe 1c1ent = ------

(1 - µ)(l + Be) 

. . . 3(1-µ) lo 
Be = 1nert1a ratio = -----

5 8 pr0

X 

X 

(5.41) 

(5.42) 

(5.43) 

The calculation procedure for foundation response using Eq. (5.39) is as follows. 
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5 I Foundation Vibration 

A.Resonant Frequency

1. Calculate the natural frequency:

2. Calculate the damping ratio De:

Cce 
= 2�kelo 

De = 
Ce = 0.1 5 
Cce $e(l + Be ) 

3. Calculate the resonant frequency:

Im 
= In J1 -2DJ (for constant force excitation) 

f, - In (for rotating mass-type excitation: 
m J l-2DJ 

B. Amplitude of Vibration at Resonance

where 

0 = 
My 1 

resonance 

ke 2De Jl _ DJ 
(for constant force excitation) 

0 = 
m1ez' -----;::1===

resonance 

lo 2DeJl _ DJ
(for rotating mass-type excitation; 
see Figure 5.17) 

m1 
= total rotating mass causing excitation 

e = eccentricity of each mass 

\ <( ? • / 
j Force= Q = m1eo/eiwt

\ . I 

\ . I 

\_ I _/Foundation 
\I/ 

. · .. ·. ·. ·. 1 ·· ·. 
: ... : �. : . . : '.. . 

Figure 5.17 Rotating mass-type excitation 

(5.44) 

(5.4 5) 

(5.46) 

(5.47) 
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5.5 Rocking Vibration of Foundations 

C. Amplitude of Vibration at Frequencies Other Than Resonance

For constant force-type excitation [Eq. (2.82)]:

0 = My/ke 
�[1-(ro 2/ro�)J2 + 4DJ (ro 2/ro�) 

A plot of 0/(My
/k0 ) versus m/mn is given in Figure 5.12. 

For rotating mass-type excitation [Eq. (2.95)]: 

0 = {m1ez'/Io)(m 2/m�) 

�[1-(ro 2/ro�)]2 +4DJ(ro 2/ro�) 
Figure 5.13 shows a plot of 0/(m1ez' / 10 ) versus m/mn . 

(5.48) 

(5.49) 

In the case of rectangular foundation, the preceding relationships can be 
used by determining the equivalent radius as 

ro = �BL'
31t

The definitions of Band Lare shown in Figure 5.18. 

-------L------_, 

G 
p 

µ 

�
I 

: .... -�-. . . 

" .. .... .... · .. -.::1 . ..... --

r : 

Section 

B ·-·---·-·-·-·-t--·-·-·-·-·----·-

1 : 
I 

--------L-------..i 

Plan 

(5.50) 

Figure 5.18 Equivalent radius of rectangular rigid foundation-rocking motion 
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5 I Foundation Vibration 

EXAMPLE 5.3 

A horizontal piston-type compressor is shown in Figure 5.19. The operating 
frequency is 600 cpm. The amplitude of the horizontal unbalanced force of the 
compressor is 30 kN, and it creates a rocking motion of the foundation about 
point O (see Figure 5.19b). The mass moment of inertia of the compressor 
assembly about the axis b'Ob' is 16 X 105 kg-m2 (see Figure 5.19c). Determine 

a. the resonant frequency, and
b. the amplitude of rocking vibration at resonance.

SOLUTION: 

Moment of inertia of the foundation block and the compressor assembly 
about b 'Ob': 

lo
= (

Wroun
;t

block )[ ( �J + h2 ] + 16 X 105 kg-m2

Assume the unit weight of concrete is 23.58 kN/m3. 
Wroundationblock = (8 X 6 X 3)(23.58) = 3395.52 kN 

= 3395.52 X 103 N 

I = 

3395.52 X 103 

(32 + 32) + 16 X 10s0 (3)(9.81) 
= 36. 768 X 105 kg-m2

Calculation of equivalent radius of the foundation: From Eq. (5.50), the 
equivalent radius is 

r
0

= � = �8 ;7t63 = 3.67 m

a. Determination of resonant frequency:

k = 8GrJ = (8)(18, 000)(3-67)3 = 3650279 kN-m/rad0 3(1- µ) (3)(1- 0.35) 

fn 
= _l {ke = _l 3650279 X 103 N-m/rad = 5_01 Hz

21t Vlo 21t 36.768 X 105 

::::::: 300 cpm 

B = 3(1- µ) !!_ = 3(1- 0.35) 36.768 X 105 = 
0_7480 8 prJ (8)(1800)(3.67)5 

D 
_ 0.15 0.15 

= 0 _099 0 

- /Be(l + B0 ) .J0.748 (1 + 0.748)

f, 
In 

m - �l - 2DJ �1 - 2DJ 

300 300
= 303 Cm

�1 - 2(0.099)2 p 
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5.5 Rocking Vibration of Foundations 
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5 I Foundation Vibration 

b. Calculation of amplitude of vibration at resonance:

My( operating frequency) = unbalanced force X 4 
= 30 X 4 = 120 kN-m 

My(at resonance) = 120( 
J. 

fn J

2 

operation 

( 
303 

)
2 

= 120 - = 30.6 kN-m 
600 

_ (21t) (303) _ 
COresonance - ---- - 31. 73 rad/s 

60 

' - My - 30.6 X 103 N-m - 0 0304 103m1ez ---------- . X 
m

2 (31.73)3 

From Eq. (5.47) 

0 = 

m1ez' --=1== resonance lo 2De)l _ Di

-( �����:: ��: J[ (2)(0.099)Jl - (0.099)2] 
= 4.2 X 10-5 rad 

Bl SLIDING VIBRATION OF FOUNDATIONS

Arnold, Bycroft, and Wartburton (1955) have provided theoretical solutions for 
sliding vibration of a rigid circular foundation (Figure 5 .20) acted on by a force 
Q = Q0 e

imi
_ Hall (1967) developed the mass-spring-dashpot analog for this type 

of vibration. According to this analog, the equation of motion of the foundation 
can be given in the form 

where m = mass of the foundation 

kx = static spring constant for sliding 
32(1- µ)Gro

7-8µ

(5.51) 

(5.52) 
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5.6 Sliding Vibration of Foundations 

G 

p 

µ 

Foundation mass= m

·-�---ro----,,

z 

Figure 5.20 Sliding vibration of rigid circular foundation 

c x = dash pot coefficient for sliding 
_ 18.4(1-µ) 

2 �G- ----r0 'V pv 
7-8µ 

(5.53) 

Based on Eqs. (5.51), (5.52), and (5.53), the natural frequency of the founda
tion for sliding can be calculated as 

fn = _l {k: = _l 32(1 - µ )Gro
21t �--;;; 21t (7 - 8µ)m 

The critical damping and damping ratio in sliding can be evaluated as 

Ccx = critical damping in sliding 

= 2)kxm = 2 
32(1-µ) Gr0m

(7 -8µ) 

Dx = damping ratio in sliding 
Cx 0.288 
Ccx .Jli: 

where the dimensionless mass ratio 

7-8µ mB =----
x 

32(1- µ) prJ

(5.54) 

(5.55) 

(5.56) 

(5.57) 

For rectangular foundation, the preceding relationships can be used by 
obtaining the equivalent radius r0, or 
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5 I Foundation Vibration 

ro = � 

where B and L are the length and width of the foundation, respectively. 

Calculation Procedure for Foundation Response Using Eq. (5.51) 

Resonant Frequency 

1. Calculate the natural frequency fn using Eq. (5.54)
2. Calculate the damping ratio Dx using Eq. (5.56). [Note: Bx can be

obtained from Eq. (5.57).]
3. For constant force excitation (that is, Q0 = constant), calculate

4. For rotating mass-type excitation, calculate

Amplitude of Vibration at Resonance 

1. For constant force excitation, amplitude of vibration at resonance is

A _ Qo 1 
x(resonance) - -k 2 )l

-

2 

x 

Dx Dx 

where Ax(resonance) = amplitude of vibration at resonance. 

2. For rotating mass-type excitation,

where m1 = total rotating mass causing excitation 

e = eccentricity of each rotating mass 

Amplitude of Vibration at Frequency Other Than Resonance 

1. For constant force-type excitation,

A = Qo/kx 
x �[1-(co2/co�)J2 +4D;(co2/co�)

(5.58) 

(5.59) 

(5.60) 

Figure 5.12 can also be used to determine Axl(Q0lkx) for given values of co/con

and Dx . 
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5.7 Torsional Vibration of Foundations 

2. For rotating mass-type excitation,

A = 
(m1e/m)(m/mn)

2

x J[1-(m 2/m�)]2 +4D;(m 2/m�) 
(5.61) 

Figure 5.13 provides a plot of Axl(m1elm) versus w/mn for various values of Dx . 

Ill TORSIONAL VIBRATION OF FOUNDATIONS

Figure 5.21a shows a circular foundation of radius r0 subjected to a torque 
T = T00imt about an axis z-z. Reissner (1937) solved the vibration problem of this 
type by considering a linear distribution of shear stress rze (shear stress zero at 
center and maximum at the periphery of the foundation), as shown in Figure 
5.21b. This represents the case of a flexible foundation. In 1944 Reissner and 
Sagoli solved the same problem for the case of a rigid foundation, considering 
a linear variation of displacement from the center to the periphery of the founda
tion. For this case, the shear stress can be given by (Figure 5.21c) 

3 Tr 
r ze = -

1 
for O < r < r0

41t ra3 \Jra2 - r2
(5.62) 

Similar to the cases of vertical, rocking, and sliding modes of vibration, the 
equation for the torsional vibration of a rigid circular foundation can be written as 

where 

(5.63) 

Jzz 
= mass moment of inertia of the foundation about the axis z-z

Ca = dash pot coefficient for torsional vibration 

k . . J:' • 1 .b . 
16 G 3 a

= static spnng constant 1or tors1ona v1 ration = - r03 
a = rotation of the foundation at any time due to the 

application of a torque T = T00 imt

(5.64) 

The damping ratio Da for this mode of vibration has been determined as (Richart, 
Hall, and Wood, 1970)

where 

D = 0.5
a 

l + 2Ba

Ba
= the dimensionless mass ratio for torsion at vibration 

Jzz 

prJ 

(5.65) 

(5.66) 
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5 I Foundation Vibration 
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Figure 5.21 Torsional vibration of rigid circular foundation 
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5.7 Torsional Vibration of Foundations 

Calculation Procedure for Foundation Response Using Eq. (5.63) 

Resonant Frequency 

1. Calculate the natural frequency of the foundation as

f, =-1 � 
n 2n �"Y::

2. Calculate Ba using Eq. (5.66) and then Da using Eq. (5.65).
3. For constant force excitation (that is, T0 = constant) 

fm = fn �l-2D& 

For rotating mass-type excitation 

f, 
fn

m 

- �l-2D�

(5.67) 

Amplitude of Vibration at Resonance: For constant force excitation, the
amplitude of vibration at resonance is 

To l 
a =-----=== 

resonance ka 2Da �l _ D� 

For rotating mass-type excitation 

Where m1 = total rotating mass causing the excitation 
e = eccentricity of each rotating mass 

For the definition of x in Eq, (5.69), see, Figure 5.22. 

(5.68) 

(5.69) 

Amplitude of Vibration at Frequency Other Than Resonance: For constant
force excitation, calculate m/mn and then refer to Figure 5.12 to obtain al(T0 I ka ),
For rotating mass-type excitation, calculate ml Wn and then refer to Figure 5.13 to 
obtain al[m 1e(x/2)/ Jzz l

For a rectangular foundation with dimensions BX L, the equivalent radius
may be given by 

BL(B2 
+ L2 )

ro = 4 -----"-------'-

61t 
(5.70) 

The torsional vibration of foundations is uncoupled motion and hence can 
be treated independently of any vertical motion. Also, Poisson's ratio does not 
influence the torsional vibration of foundations. 
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5 I Foundation Vibration 

Figure 5.22 

EXAMPLE 5.4 

A radar antenna foundation is shown in Figure 5.23. For torsional vibration
of the foundation, given 

T0 = 250 kN-m (due to inertia) 
T0 = 83 kN-m (due to wind) 

Mass moment of inertia of the tower about the axis z-z = 13 X 106 kg· m2
, and 

the unit weight of concrete used in the foundation = 24 kN/m3
• Calculate 

a. the resonant frequency for torsional mode of vibration; and
b. angular deflection at resonance. 

SOLUTION: 

a. 

Jzz = J zz (tower) + J zz (foundation) 

= 13 X 106 
+ 1-[nrlh(24 X lOOOJ]

r
l2 9.81 

= 13 X 106 
+ _!_[n(7.6)2 (2.5)(

24 X lOOOJ](7.6)2 

2 9.81 
= 13 X 106 

+ 32.05 X 106 = 45.05 X 106 kg-m2

From Eq. (5.66) 
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Figure 5.23 

5.7 Torsional Vibration of Foundations 

Section 

T __ .. _.-·_-._ ... _;,:-._-_.·_.,-_ .. _-°.ii_- . _: :·_4 . _- "·. 
h=2.5m. 
i . :- · .. · .......__ __ ·· . ..;...·, ........,;.--.:.......-.......... �__.;......__,;_........,;. __ ,___. 

...,.I ,. ______ ___._ 15.2 m ----

G = 135,000 kPa 

r= 17.6 kN/m3

µ=0.25 

§ 

I-+-- 15.2 m = 2r
0 

--------
' 

B = Jzz = 
45.05 X 106

= 0 99 
a prJ (17.6 X 10 3 /9.81)(7.6)5 · 

Again from Eq. (5.65), 

D = 0.5
a 1 + 2B

a

0
·
5 = 0.168

1 + ( 2) ( 0. 99) 

Also, ka [Eq. (5.64)] is 

16 
(

16
J ka = 

3
GrJ = 

3 
X 135 X 106 

X (7.6)3 = 3.16 X 1011 N-m 

1 � 1 
In 

= 2n �Y:° = 2n 

= 13.33 Hz 

3.16 X 101 1

45.05 X 106

Thus, the damped natural frequency 

Im
= ln Jl -2D� = (13.33)Jl - (2)(0.168)2 

= 12.92 Hz 
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5 I Foundation Vibration 

b. Angular deflection at resonant frequency:
If the torque due to wind (T0 ) is to be treated as a static torque, then

or 

So 

To =ka 
astatic 

3 
J; 

[ 83 X 103 ]
astatic = 

l6GrJ O(static)
= 

3.16 X 1011 

= 0.0263 X 10-5 rad 
Using Eq. (5.68), for the torque due to inertia 

To l 
a =---=== resonance 

ka 2Da �l _ D& 

-[ :.��: ��:, ][ (2)(0.168) Jl-(0.168)2 ] 
= 0.24 X 10-5 rad 

At resonance, the total angular deflection is 

a =
ainertia + astatic = (0.24 + 0.0263) X 10-5 = 0.2663 X 10-s rad

DI COMPARISON OF FOOTING VIBRATION TESTS

WITH THEORY 

Richart and Whitman (1967) conducted a comprehensive study to evaluate 
the applicability of the preceding theoretical findings to actual field pro bl ems. 
Ninety-four large-scale field test results for large footings 1.52 m to 4.88 m in 
diameter subjected to vertical vibration were reported by Fry (1963). Of these 
94 test results, 55 were conducted at the US Army Waterways Experiment 
Station, Vicksburg, Mississippi. The remaining 39 were conducted at Eglin Field, 
Florida. The classification of the soils for the Vicksburg site and Eglin site were 
CL and SP, respectively (Unified soil classification system). For these tests, the 
vertical dynamic force on footings was generated by rotating mass vibrators. 

Figure 5.24 shows a comparison of the theoretical amplitudes of vibration 
Az as determined from elastic half-space theory with the experimental results 
obtained for two bases at the Vicksburg site. The nondimensional mass ratios b 
[Eq. (5.4)] of these two bases were 5.2 and 3.8. For the base with b = 5.2, the 
experimental results fall between the theoretical curves, withµ= 0.5 andµ= 0.25. 
However, for the base with b = 3.8, the experimental curve is nearly identical to 
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5.8 Comparison of Footing Vibration Tests with Theory 

the theoretical curve withµ= 0.5. Figure 5.25 shows a comparison of the theory 
and experimental values reported by Fry in a nondimensional plot of A2mlm1e at 
resonance versus b. Similarly, a comparison of these test results with theory in a 
nondimensional plot of a0 [Eq. (5.5)] at resonance versus bis shown in Figure 5.26. 

From these two plots it may be seen that the results of the Vicksburg site fol
low the general trends indicated by the theoretical curve obtained from the elas
tic half-space theory for a rigid base. A considerable scatter, however, exists for 
the tests conducted at Eglin Field. This may be due to the clean fine sand found 
at that site, for which the shear modulus will change with depth. The fundamen
tal assumption of the theoretical derivation of a homogeneous, elastic, isotropic 
body is very much different than the actual field conditions. 

Figure 5.27 shows a summary of all vertical vibration tests, which is plot 
of Azccomputed/Azcmeasured) versus Azro2/g (that is, nondimensional acceleration, 
g, equals acceleration due to gravity). When the nondimensional acceleration 
reaches 1, the footing probably leaves the ground on the upswing and acts 
as a hammer. In any case, in actual design problems, a machine foundation 
is not subjected to an acceleration greater than 0.3g. However, for dynamic 

0.15 ,------�-------..------------.-------,

m 
b = -3 [Eq.(5.4)]

pro 

WES Base 2-7 
(b= 5.2) 

WES Base4-5 
(b = 3.8) 

o-----------------------

10 20 
Frequency (Hz) 

30 

Figure 5.24 Vertical vibration of foundation-comparison of test results with 
theory (from Richart and Whitman, 1967) 

Source: Richart, F.E., Jr., and Whitman, R.V. (1967). "Comparison of Footing Foundation 

Tests with Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, 

pp. 143-167. With permission from ASCE. 
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Theory; rigid base 
Theory; parabolic 
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Mass ratio, b = m 
3

pro 

Figure 5.25 Motion at resonance for vertical excitation-comparison between 

theory and experiment (from Richart and Whitman, 1967) 

Source: Richart, F.E., Jr., and Whitman, R.V. (1967). "Comparison of Footing Foundation 

Tests with Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, 

pp. 143-167. With permission from ASCE. 

problems of this nature, the general agreement between theory and experiment 
is fairly good. 

Several large-scale field test were conducted by the US Army Waterways 

Experiment Station (Fry, 1963) in which footings were subjected to torsional 
vibration. Mechanical vibrators were set to produce pure torque on a horizontal 
plane. Figure 5.28 shows a plot of the dimensionless amplitude aJzz l[m1e(x/2)] 
versus Ba(a =amplitude of torsional motion and m1 = sum of the rotating 
masses; for definition of x, see the insert in Figure 5.28) for some of these tests 
that correspond to the lowest settings of the eccentric masses on the vibrator. 

The theoretical curve based on the elastic half-space theory is also plotted in this 
figure for comparison purposes. It can be seen that, for low amplitudes of vibra
tion, the agreement between theory and field test results is good. 

The limiting torsional motion in most practical cases is about 2.5 X 10-3 mm. 
So the half-space theory generally serves well for most practical design con
siderations. Comparisons between the elastic half-space theory and experimental 

results for footing vibration tests in rocking and sliding modes were also pre
sented by Richart and Whitman (1967). The agreement seemed fairly good. 
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Figure 5.26 Plot of a0 at resonance versus b---comparison of theory with field 
test results (from Richart and Whitman, 1967) 

Source: Richart, F.E., Jr., and Whitman, R.V. (1967). "Comparison of Footing Foundation 

Tests with Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, 

pp. 143-167. With permission from ASCE. 

• Vicksburg site
o Eglin site

21------+---------------------+--------< 

• 
• 

• 

0 
0 

• 

• 

• • 

0 
• 

• 

Ce 

0 

0 

0 
0 

•o ,_
o.u. 

0 

0 

0 

• 

00 
0 

0 

0 
0 

0 
0

0 

•o •o

0 

• 0 
• 0 0.0 •• -

• o  • • • 0 
0 • 

0 • •  0 
• • • o. 0 •

• 

0 0 
0 

0 

• 

-

•• • 

• 

• 
• 

0.5 
1-------+---------------------+---------1

0 

0.1 1.0 2.0 

A m
2 

_z_ (log scale) 
g 

Figure 5.27 Summary of vertical vibration tests (from Richart and Whitman, 1967) 

Source: Richart, F.E., Jr., and Whitman, R.V. (1967). "Comparison of Footing Foundation 

Tests with Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, 

pp. 143-167. With permission from ASCE. 
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Figure 5.28 Comparison of amplitudes for torsional vibration (redrawn from 
Richart and Whitman, 1967) 

Source: Richart, F.E., Jr., and Whitman, R.V. (1967). "Comparison of Footing Foundation 

Tests with Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, 

pp. 143-167. With permission from ASCE. 

IIJI COMMENTS ON THE MASS-SPRING-DASHPOT

ANALOG USED FOR SOLVING FOUNDATION 

VIBRATION PROBLEMS 

The equations for the mass-spring-dashpot analog for various modes of vibra
tion of rigid circular foundations developed in the preceding sections may be 
summarized as follows: 

For vertical vibration, 

For rocking vibration, 

For sliding vibration, 

For torsional vibration 

mz + C Z + k Z = n e imt 
z z �o 

lzza +Ca li+ ka a = To o imt 

(5.22) 

(5.39) 

(5.51) 

(5.63) 
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5.9 Comments on the Mass-Spring-Dash pot Analog Used for Solving Foundation Vibration Problems 

The mathematical approach for solution of the preceding equations is sim

ilar for determination of the natural frequency, resonant frequency, critical 

damping, damping ratio, and the amplitudes of vibration at various frequencies. 
The agreement of these solutions with field conditions will depend on proper 

choice of the parameters (that is, m, Io, Jzz , C z , Ce, Cx , Ca , kz , ke, kx , and ka . In this 
section, we will make a critical evaluation of these parameters. 

Choice of Mass and Mass Moments of Inertia 

The mass terms mused in Eqs. (5.22) and (5.51) are actually the sum of 

1. mass of structure foundation block m1, and
2. mass of all the machinery mounted on the block mm .

During the vibration of foundations, there is a mass of soil under the foundation 

that vibrates along with the foundation. Thus, it would be reasonable to consider 
the term min Eqs. (5.22) and (5.51) to be the sum of 

(5.71) 

where ms = effective mass of soil vibrating with foundation. 
In a similar manner, the mass moment of inertia terms I0 and Jzz included 

in Eqs (5.39) and (5.63) include the contributions of the mass of the foundation 

and that of the machine mounted on the block. It appears reasonable also to add 
the contribution of the effective mass of the vibrating soil (ms ), that is, the effec

tive soil mass moment of inertia . Thus 

[ 0 = IO (foundation) + IO (ma chine) + IO ( effective soil mass) (5.72) 

and 

fzz = Jzz(foundation) + Jzz(ma chine) + Jzz(effectivesoilmass) (5.73) 

Theoretically, calculated values of ms , Iocerrectivesoitmass), and lzz(etrectivesoitmass) are 

given by Hsieh (1962). They are as follows: 

1. Values of ms for vertical vibration:

Poisson's ratio, µ 

0.00 

0.25 

0.50 

2. Values of ms for horizontal vibration:

Poisson's ratio,µ 

0.0 

0.25 

0.50 

0.5prJ 

0.5prJ 

2.0prJ 

0.2prJ 

0.2prJ 

0.lprJ
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5 I Foundation Vibration 

3. Values of Io(etrectivesoi1mass) for rocking vibration: Poisson's ratio µ = O;
[ 0( effective soil mass) = 0 .4 pra5

4. Values of lzz(etrective soil mass) for torsional vibration:

Poisson's ratio, µ 

0.00 

0.25 

0.50 

0.3prcf 

0.3prcf 

0.3prcf 

In most cases, for design purposes the contribution of the effective soil mass is 
neglected. This will, in general, lead to answers that are within 30% accuracy. 

Choice of Spring Constants 

In Eqs. (5.23), (5.41), (5.52), and (5.64), the spring constants defined were for the 
cases of rigid circular foundations. In examples where rigid rectangular founda
tions were encountered, the equivalent radii r0 were first determined. These val
ues of r0 were then used to determine the value of the spring constants. However, 
more exact solutions for spring constants for rectangular foundations derived 
from the theory of elasticity can be used. These are given in Table 5.1 along with 
those for circular foundations. Dobry and Gazetas (1986) have developed more 
realistic values of spring constants and demonstrated their use through a design 
exercise. 

Table 5.1 Values of Spring Constants for Rigid Foundations (after Whitman 
and Richart, 1967) 

Motion 

Vertical 

Horizontal (sliding) 

Rocking 

Torsion 

Vertical0

Spring constant 

Circular foundations 

k = 
4Gro 

z 1- µ

k = 32(1- µ)GrJ
X 

7-8µ

ke 
= 8Gro3

3(1- µ) 

Rectangular foundations 

G k =-F:JBi 
z l z -µ

Reference 

Timoshenko and Goodier 
(1951) 

Bycroft (1956) 

Borowicka (1943) 

Reissner and Sagoci (1944) 

Barkan ( 1962) 
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5.9 Comments on the Mass-Spring-Dash pot Analog Used for Solving Foundation Vibration Problems 

Horizontala (sliding) 

Rockingh 

kx = 2(1 + µ) GFx J"iii 

k0 = _2_ FeBL2

1-µ

a B = width of foundation; L = length of foundation. 

Barkan (1962) 

Gorbunov-Possadov and 

Serebrajanyi(l 961) 

b For definition of Band L, refer to Figure 5.18. Refer to Figure 5 .29 for values of E'z, Fx, and Fe. 

Source: Whitman, R.V., and Richart, F.E., Jr. (1967). "Design Procedures for Dynamically 
Loaded Foundations," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, 
No. SM6, pp. 169-193. With permission from ASCE. 

Another fact that needs to be kept in mind is that the foundation blocks are 
never placed at the surf ace. If the bottom of the foundation block is placed at a 
depth z measured from the ground surf ace, the spring constants will be higher
than that calculated by theory. This fact is demonstrated in Figure 5.30 for the case 

3 

2 

0 

0.1 

--� 
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-

� 
-
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i--',_. 

Fz 

Fo 

1 

LIB 

Fx 

/ 

�"'
.. V 
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I 

/ 

..,,. .,,..

--i.---

1.5 
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I 
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,,. ...
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10 

Figure 5.29 Plot of�' Fx and F0 against LIB (from Whitman and Richart, 1967) 

Source: Whitman, R.V., and Richart, F.E., Jr. (1967). "Design Procedures for Dynamically Loaded 
Foundations," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, 
pp. 169-193. With permission from ASCE. 
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5 I Foundation Vibration 

of vertical motion of rigid foundations. This could possibly due to the frictional 
resistance of the sides of the foundations. The behavior of embedded foundations 
subjected to various types of vibration is presented in Sections 5.12 through 5.15. 

Choice of Poisson's Ratio 

Whitman and Richart (1967) recommended the following values of Poisson's 
ratio for different types of soils: 

Sand (dry, moist, partially saturated)µ= 0.35 to 0.4 

Clay (saturated)µ= 0.5 

A good value for most partially saturated soils is about 0.4 

Choice of Damping Ratio 

In soils there are two types of damping, geometric damping ( also known as 
radiation damping) and internal damping (also known as material damping or 
hysteretic damping). The radiation damping (defined as loss of energy over one 
wave length) depends on parameters such as Poisson's ratio, mass of the founda
tion, equivalent radius, and the density of the soil. The relations for the damping 
ratio given in Eqs. (5.27), (5.45), (5.56), and (5.65) are for radiation damping only. 

The internal damping Di varies over a wide range, depending on the type of soil 

and the strains generated in the soil. Generally the values of Di are the range of 0.01 
to 0.1. Thus an average value of Di would be a good estimate to be used in foundation 
design (Whitman and Richart, 1967). The damping ratio can then be approximated as 

ID= Dradiation + 0.051 (5.74) 

For vertical and sliding motions, the contribution of internal damping can be 

somewhat neglected. However, for torsional and rocking modes of vibration, the 
contribution of the internal damping may be too large to be ignored. 

Depth of foundation from the ground surface 

Figure 5.30 Nature of variation of kz with the depth of the foundation 
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5.10 Improved Methods for Estimation of Dynamic Spring Constant and Dashpot Coefficient 

11D IMPROVED METHODS FOR ESTIMATION OF DYNAMIC

SPRING CONSTANT AND DASHPOT COEFFICIENT 

In Sections 5.4-5.7, we have used an equivalent radius (r
0

) for dynamically excited 
rectangular foundations to determine the resonant frequency and the amplitude 

of vibration. The quality of solutions with that type of assumption deteriorates as 
the length-to-width ratio (LIB) of the foundation increases. To that extent, Dobry 

and Gazetas (1986) have provided improved solutions to estimate the spring con

stant and dashpot coefficient for evaluation of the dynamic response of an arbi
trarily-shaped foundation, which is the subject of discussion in this section. 
Figure 5.31a shows the plan of an arbitrarily-shaped foundation. The circum
scribed rectangular area has a length of 2L' and a width of 2B'. The area of 
the foundation is A. Note carefully the directions of the x and y axes. The z

axis is directed downward from the centroid of the foundation 0. Figures 5.31 b 

and 5.3 lc show the dimensions 2L' and 2B' for a rectangular and a circular 

T Area=A 

2B' 

_l 
J. 

Ix= l .333L' B'3

Iy 
= l .333B' L'3

J = Ix+I
y y 

T X 

2B' 0 

_L A = 4L'B' 

I· 2L' ·I
(b) 

y 

0 (Centroid) 

2L' 

(a) 

T 
2B' = 2L' 

l 

y 

0 

A = J[L'2

X 

J[L'4 I = I = -
X y 4 

J = Ix+ I
y

X 

�2L'� 

(c) 

Figure 5.31 Plan of: (a) arbitrarily shaped foundation; (b) rectangular shaped 
foundation; ( c) circular shaped foundation. 
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5 I Foundation Vibration 

foundation. The dynamic spring constant k(d) and dashpot coefficient c(d) for a 
given mode of vibration can be expressed as, in general, 

kcd) = Ska -mcD 

2Sk 
c(d) =c+--D 

(J) 

where k = static spring stiffness 

(5.75) 

(5.76) 

c = static radiation dashpot coefficient with zero material damping 

D = damping ratio 

a, S = dimensionless coefficients 

Following are the relationships of parameters given in Eqs. (5.75) and (5.76) for 
various modes of vibration of foundations: 

a. Vertical Vibration

Table 5.2 gives the relationships fork= kz , S = S z, and c = cz. For the variation of 
a = az, refer to Figure 5.32. 

Table 5.2 Variation of ks, sz and Cs 

Parameter Relationship 

General Shape 

2L'G 
l-µ

0.8 (ror � < 0.02)
4L'2 

( A )o.1s
0.73 + 1.54 4£'2 ( for 41,2 

> 0.02)

Hence, from Eqs. (5.75) and (5.76), 

Circle 

4GB'

l-µ

See Figure 5.33. At high frequency,
3.4 {Q

n(l- µ) p�p 

(5.77) 
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Figure 5.32 Variation of az with a0 = mB' (adapted from Dobry and Gazetas, 1986) 
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Source: Based on Dobry, R., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 

Foundations," Journal of the Geo technical Engineering Division, ASCE, Vol. 112, No. GT2, pp. 109-135. 
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Figure 5.33 Variation of cz with a0 = mB' (adapted from Dobry and 
Gazetas, 1986) PVLaA Vs 

Source: Based on Dobry, R., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 

Foundations," Journal of the Geo technical Engineering Division, ASCE, Vol. 112, No. GT2, pp. 109-135. 
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5 I Foundation Vibration 

and 

(5.78) 

The values of kz(d) and Cz(d) can now be substituted in Eq.(5.22) in place of kz and 
cz, respectively, and solved for the desired parameters. 

EXAMPLE 5.5 

Refer to Example 5.1. For the foundation, calculate kz(d) and Cz(d)· Use D = 0.05 

SOLUTION: 

For the foundation, 2L' = 6 m, so L' = 3 
2B' = 2 m so B' = 1 

' 

A= (2L')(2B') = ( 6)(2) = 12 m2

Calculation of Cz(d)·:

w =2nf = (2)(n)c:i) = 18.85 rad/s 

ao = mB' = mB' = (18.85)(1)
= 0_18 

Vs IQ 20,700 
�p 18.5 

9.81 

From Figure 5.33, for a0 = 0.18 and L ' I B' = 3, the value of cz I (pvLaA) is 
about 1.1. 

Hence, 

V
La = 3.4 IQ= 3.4 20,700 = 188.98 m/s

n(l-µ)�p n(l-0.4) (
18.5

)9.81 

cz 

= ( 1.1) pv La A = ( 1.1) ( 
18 

· 5 
) ( 188. 9 8 )( 12) = 4 7 04. 3 kN · s/m

9.81 

k = 2L'G 
= (2)(3)(20, 700 kPa)  = 207 OOO kN/m

z 1-µ l -0.4 ' 

A 12 
-4L-,2 -( 4)(3)2 

= 0.333 (> 0.02)
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Hence,
( A )

0.15

Sz = 0. 73 + 1. 54 
4L,2 = 0. 73 + 1.54(0.333)0

·
75 = 1.405

c (d) = c + 2S zkz D = 4 704.3 + (2)(1.405)(207, 000)(0.05) � 6247 kN. s/mz z 
m 18.85 

Calculation of kz(d):

From Figure 5.32, for a0 = 0.18, L' I B' = 3 and µ = 0.4, the value of az is
about 1. So,

kzcd) = (1.405)(207,000)(1)- (18.85)( 4704.3)(0.05) = 286,481 kN/m

Note: In Example 5.1, we used kz [not kz(d)] and Cz [not Cz(d)] in Eq. (5.22) with

k = 
4Gro 

= 
( 4)(20, 700)(1.954) 

= 269 652 kN/mz 1-µ 1-0.4 ' 

Cz = 
3.4ra2 .jGp = 

(3.4 )(l.954 )2 

(20, 700)( 
18·5) = 4274.8 kN · s/m

1-µ 1-0.4 9.82 

b. Rocking Vibration

Table 5.3 gives the relationships fork= ke, S = Se, and c = ce . For the varia
tion of a = ae , refer to Figure 5.34.

Table 5.3 Variation of ke, Se , and ce 

Parameter
General shape-rocking about x axis

ke = kex

Circle-rocking about x axis
Sexkex

Relationship

_!}__ J0.75

1-µ X 

2. 54 ( B1 ) ( B1 ) ( 
1
: 
r

25 for L' < 0.4 ; 3.2 for L' > 0.4 

8GB13

3(1- µ)

See Figure 5.35. At high frequency,

3.4 {Q Cex = n(l - µ) P VP Ix

( Continued) 
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5 I Foundation Vibration 

General shape-rocking about y axis 

ke = key

Se 
= Sey

Circle-rocking about y axis 

Seykey

Ce
= Cey 

_Q__(/ )0.75
l- µ y 

3.2 

8GB' 3

3(1- µ) 

See F igure 5.35. At high frequency, 

3.4 {QI Cey = n(l- µ)p�p y

It is important to recognize that, for rectangular foundations (Figure 5.31 b ), 
Ix = l.333L' B'3 and I 

Y = 1.333B' L'3
• When the circumscribed dimensions 

(Figure 5.31a) are not completely filled in, it is necessary to compute Ix and I
y
. 

Hence, from Eqs. (5.75) and (5.76), 

and 

2Sexkex 

Cex(d) = Cex + ---D
OJ 

key(d) = S0yk0ya0y - OJCey D

2Seykey 
Cey(d) = Cey + ---D

OJ 

-
-- --
... .... .... ...... ........ ..... ... .... ... ... .... 

-
/.
--- --

.... .... ... .... - -... 
L'IB'=l 

- -------
2 5' L'IB' 5' 5 

--
ae 0.5 1---------+---------1----------1 

0.5 1.0 1.5 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

Figure 5.34 Variation of aex and aey with a0 = 

OJB' 
(adapted from Dobry and

Gazetas, 1986) Vs

Source: Based on Dobry, R., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 
Foundations," Journal of the Geotechnical Engineering Division, ASCE, Vol. 112, No. GT2, pp. 109-135. 
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1.0.-----------.--------,-----------,

-- Cex/(pvLafx) 

- - - • c8Y j(pvLaly)

L'IB' = 3 

I ..... "" 
$ i 0.6

L'IB'= 1 and2 

O-===;__ _____ __,_ _______ J...._ ______ _. 

0 0.5 1.0 1.5 

Figure 5.35 Variation of Cex and cey with a0 
= mB' (adapted from Dobry

and Gazetas, 1986) pvLalx pvLal Y Vs 

Source: Based on Dobry, R., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 

Foundations," Journal of the Geotechnical Engineering Division, ASCE, Vol. 112, No. GT2, pp. 109-135. 

EXAMPLE 5.6 

Refer to Example 5.3. Estimate the value of ke(d) and ce(d) for the mode of
vibration shown. Use D = 0.05.

SOLUTION: 

Refer to Figure 5.19. For this case, L' = 4 m and B' = 3 m. With reference to
directions of the x and y axes shown in Figure 5.30 and the mode of vibration
shown in Figure 5.19, the foundation is rocking about the x axis.

Calculation of C0x(d) :

ro = 2n f = 2n( �;) = 62.83 rad/s

= 1800 X 9.81 = 17.66 kN/m3r 1000 

ao = mB' = mB' = (62.83)(3) = 1.885
Vs {Q 18,000 

�p 
(

17.66
)9.81 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



5 I Foundation Vibration 

From Figure 5.35, for a0 = 0.1885 and L' I B' = 4/3 = 1.33 , the value of
Cex f (pvLalx) � 0.5

V
La = 3.4 (Q = [ 3.4 ] 18, 000 = 166 49 m/s 

n(l - µ) �p n( l - 0.35) ( 17.66)
9.81 

So, 

( 
17.66

) Cex = ( 0.5) -- (166.49)(143.96) = 21,564.6 kN · s/m 
9.81 

k = G 10.?s
0x l X 

-µ 

Ix = l .333L' B' 3 = (1.333)( 4)(3)3 = 143.96 m4
; Sex = 3.2 

k = 18, 000 (143.96)0·75 = 1 150 908 kN · m/radex 
l - 0.35 

' ' 

From Eq. (5.80), 

(2)(3.2)(1,150 , 908)kex DCex(d) = Cex + -------
(J) 

= 21,564.6 + (2)(3-2)(1, l50 , 908)(0.05) = 27,426.3 kN · s/rad
62.83 

Calculation of kex(d): From Eq. (5.79), 

From Figure 5.34 by extrapolation ( for a0 = 1.885), a0x 
� 0. 7. 

kex(d) = (3.2)(1,150, 908)( 0.7)- (62.83)(21, 564.6)(0.05) = 2,510,289 kN · m/rad

c. Sliding Vibration

Table 5.4 gives the relationships for k= ks , S = Ss , and c =cs.For the variation 
of a = asy , refer to Figure 5.36. Also note that a = asx = 1. 

Table 5.4 Variation of ks , Ss , and Cs

Parameter 

General shape-sliding parallel toy axis 

ks
= ksy

Relationship 

2L'G 

2-µ

2.24 ( for 
4
;,2 

< 0.4)
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5.10 Improved Methods for Estimation of Dynamic Spring Constant and Dashpot Coefficient 

Circle-sliding parallel toy axis 
S

sy
k

sy 

4.5 -- for-->0.16 ( 
A 

)
0
-
38 

( A
)4L'2 4L'2

8GB' 

2-µ

See Figure 5.37. At high frequency, c,, = p EA 
General shape-sliding parallel to x axis

S
sx

k
sx 

Circle-sliding parallel to y axis 

Hence, from Eqs. (5.75) and (5.76), 

1.5 

- asy 
(µ = 0.33)

S k _ 0.2lL'G (l- B'
)sy sy 

O. 7 5 - µ L' 

8GB' 

2-µ

For L' < 3, see Figure 5.38
B' 

For->3 c =p -AL' 
E 

B' , sx 
p 

L'IB' = 10 

4 

..
..

..
..

.... 1 
..
..
.. 4..

.. 

----------- �--------..
.. 
..
.. 

.... 
..

..
.. 

0.5 ----------------------� 
0.5 1.0 1.5 

(5.83) 

Figure 5.36 Variation of asy and at, with a0 = mB' (adapted from Dobry and 
Gazetas, 1986) Vs

Source: Based on Dobry, R., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 

Foundations," Journal of the Geotechnical Engineering Division, ASCE, Vol. 112, No. GT2, pp. 109-135.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



5 I Foundation Vibration 

3.0 

2.0 

1.0 

0 
0 

\.'IB' = 10

4� 

2 

1 

0.5 1.0 1.5 

Figure 5.37 Variation of Csy with a0 = OJB' (adapted from Dobry and 
Gazetas, 1986) PVs A Vs 

Source: Based on Dobry, R ., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 

Foundations," Journal of the Geotechnical Engineering Division, ASCE, Vol. 112, No. GT2, pp. 109-135. 

2.0 

0 
0 0.5 

L' 
-<3
B'-

1.0 

v=J%s p 

1.5 

Figure 5.38 Variation of Csx with a0 = OJB' for L' < 3 (adapted from Dobry 
and Gazetas, 1986) PVs A Vs B' 

Source: Based on Dobry, R., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 

Foundations," Journal of the Geotechnical Engineering Division, ASCE, Vol. 112, No. GT2, pp. 109-135. 

(Note: asx = 1.) 

_ 2Ssyksy 
Csy(d) - Csy +---D

OJ 
ksx(d) = Ssxksx - OJ Csx D

2Ssxksx 
Csx(d) = Csx + ---D

OJ 

(5.84) 

(5.85) 

(5.86) 
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5.10 Improved Methods for Estimation of Dynamic Spring Constant and Dashpot Coefficient 

EXAMPLE 5.7 

Consider a foundation rectangular in plan measuring 8 m X 4 m. Given for the 
soil supporting the foundation, 

G = 18,000 kPa 
y = 18 kN/m3

µ = 0.333 

The foundation is subjected to sliding vibration parallel to the y axis (see 
Figure 5.31 for the direction of the axes). The frequency of vibration is 
400 cpm. Estimate the values of Csy(d) and ksy(d)· Use D = 0.04. 

SOLUTION: 

Calculation of Csy(d): 

ro = 2nf =211:( �o0 ) = 41.89 rad/s

B' = 4/2 = 2 m; L' = 8/2 = 4 m 

ao = 
mB' 

= 
mB' 

= ( 41.89)(2) 
= 0_846

v, l 18,000

p �U:1 ) 
FromFigure 5.37,for L'/B' = 4/2 = 2anda0 = 0.84, the value of Csyf(pvsA) � l. 
So, 

( 
18 

)
18,000

Csy = pvs A = 
9_81 

(
�

) 
(8 X 4) = 5815.5 kN · s/m 

9.81 

k = 
2L'G 

= 
(2)( 4)(18,000) 

= 86 382.7 kN/msy 
2 - µ 2 - 0.333 

A 
=

(2)( 4) 
= 0.125 4L'2 ( 4)( 4)2

So, Ssy = 2.24. From Eq. (5.84), 

= 
2Ssyksy 

D = 5815 5 (2)(2 .24)(86, 382 .7) 
(0 04)Csy(d) Csy + --'----'- · + ------- · 

m 41.89 
= 6185 kN · s/m 

Calculation of ksy(d): From Eq. (5.83), 
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5 I Foundation Vibration 

For L' I B' = 4/2 = 2 and a0 = 0.846, the value of asy � 1.04 (Figure 5.36). 

ksy(d) = (2.24)(86,382.7)(1.04)-(41.89)(5815.5)(0.04) = 191,493 kN/m 

d. Torsional Vibration

Table 5.5 gives the relationships fork= ki, S = Si and c = ct. For the variation 
of a = ai, refer to Figure 5.36. 

Table 5.5 Variation of ki, Si and Ci

Parameter 

General shape 

Circle 

Relationship 

G(J)o.1s 

( B')IO
3.8 + 10.7 1-

L'

16GB'3

3 

See F igure 5.39. 

At h igh frequency, c, = p tJ 
(J=fx +f

y
) 

1.0.----------,.-------.------------,-----------, 

L' 
- =oo

B'

pvs-f 

01,tii;;iie:::::::::==. ____ __J _______ ---1,. _______ _J 

0.5 1.0 1.5 

Figure 5.39 Variation of Ci with a0 = mB' (adapted from Dobry and 
Gazetas, 1986) PVsJ Vs 

Source: Based on Dobry, R., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped 
Foundations," Journal of the Geotechnical Engineering Division, ASCE, Vol . 112, No. GT2, pp. 109-135. 
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5.11 Coupled Rocking and Sliding Vibration of Rigid Circular Foundations 

Hence, from Eqs. (5.75) and (5.76), 

and 

IIJI COUPLED ROCKING AND SLIDING VIBRATION

OF RIGID CIRCULAR FOUNDATIONS 

(5.87) 

(5.88) 

In several cases of machine foundations, the rocking and sliding vibrations are cou
pled. This is because the center of gravity of the foundation and vibrators are not 
coincident with the center of sliding resistance, as can be seen from Figure 5.40a. 
This is a case of vibration of a foundation with two degrees of freedom. The deriva
tion given next for the coupled motion for rocking and sliding is based on the analy
sis of Richart and Whitman (1967). From Figure 5.40, it can be seen that the nature 
of foundation motion shown in Figure 5.40a is equal to sum of the sliding motion 
shown in Figure 5.40b and the rocking motion shown in Figure 5.40c. Note that 

Xb = Xg - h'0 

For the sliding motion, 

where 

mx = P 
K 

P = horizontal resistance to sliding 

dxb =-c --k xb
X dt X 

Substitution of Eq. (5.89) into (5.91) yields 

P= -cx 1 (x
g 

-h'0)-kx (x
g 
-h'0) 

= - CxXg + Cxh' 0 - kxXg + kxh' 0 

Now, combining Eqs. (5.90) and (5.92) 

lmxg + Cx Xg + kx Xg - Cxh'0 - kxh'0 = 01 

For rocking motion about the center of gravity, 

I
g
0 = M+M,-h'P

(5.89) 

(5.90) 

(5.91) 

(5.92) 

(5.93) 

(5.94) 

where l
g

= mass moment of inertia about the horizontal axis passing 
through the center of gravity (at right angles to the cross 
section shown) 
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Figure 5.40 Coupled rocking and sliding vibration 

M, the soil resistance to rotational motion 

But 

Substitution of Eqs. (5.92) and (5.95) into Eq. (5.94) gives 

(b) 

(5.95) 
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5.11 Coupled Rocking and Sliding Vibration of Rigid Circular Foundations 

or 

(5.96) 

For a foundation resting on an elastic half-space, the spring and dashpot 
coefficients are frequency dependent. They need to be calculated first for a 
given frequency before Eqs. (5.93) and (5.96) can be solved. However, if they are 
assumed to be frequency independent, as in the case of analog solutions, Eqs. 
(5.93) and (5.96) can be easily solved. For that case, for determination of the 
damped natural frequency, one can make Min Eq. (5.96) equal zero. So 

(5.97) 

For solving Eqs. (5.93) and (5.97), let 

(5.98) 

and 

(5.99) 

where Wm = damped natural frequency. 
Substituting Eqs. (5.98) and (5.99) into Eqs. (5.93) and (5.97) and rearrang

ing, one obtains (Prakash and Puri, 1981, 1988) 

where Dx = damping ratio for sliding vibration [Eq. (5.56)] 
D0 = damping ratio for rocking vibration [Eq. (5.45)] 

8= lg 
lo 

[Note: The term /0 was defined in Eq. (5.40).] 

32(1-µ)Gro
(7 - 8µ)m 

i 

[from Eq. (5.54)] 

(5.100) 

(5.101) 

(5.102) 
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5 I Foundation Vibration 

and 

SGrJ 

3(1- µ)Io 

t 

[from Eqs. (5.41) and (5.44)] 

Equation (5.100) can then be solved to obtain two values of Wm.

(5.103) 

The damped amplitudes of rocking and sliding vibrations can be obtained as 

(5.104) 

and 

(5.105) 

where 

(5.106) 

Vibration of Embedded Foundations 

In the theories for the vibration of foundations in various modes, as developed in 
Sections 5.2 through 5.10, it was assumed that the foundation rests on the ground 
surf ace. In reality, however, all foundations are constructed below the ground 
surface. For an embedded foundation, soil resistance is mobilized at its base and 
also along its sides. A limited number of theories have so far been developed for 
the dynamic response of embedded block foundations. The findings from these 
studies are summarized in the following four sections. 

EID VERTICAL VIBRATION OF RIGID

CYLINDRICAL FOUNDATIONS 

The dynamic response of vertically vibrating rigid cylindrical foundations 
(Figure 5.41) has been studied by Novak and Beredugo (1972). The foundation 
shown in Figure 5.41 has a radius of r0 • The shear modulus and the density of 
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5.12 Vertical Vibration of Rigid Cylindrical Foundations 

. ��·. . 

DJ r 

Elastic half-space 

G 

p 

Mass=m 

T 
z 

Side layer 

r Gs 

Ps 

Nz(t) 

Figure 5.41 Embedded rigid cylindrical foundation-vertical vibration 

the side layer of soil are Gs and Ps, respectively. Similarly, the shear modulus and
the density of the soil beneath the foundation are, respectively, G and p. If the 
foundation is subjected to a vertical exciting force, the equation of motion may 
be written in the form 

mz(t) = Q(t) - Rz(t) - Nz(t) (5.107) 

The dynamic reaction Rz(t) is considered to be independent of the depth of 
embedment. Using the elastic half-space solution, the dynamic reaction can be 
expressed as 

where 

and 

Rz (t) = Gro(C1 + iC2 )z(t)

C - -ji'1 -
Ji'2 + 1;2

C - Ji
2 - Ji'2 + 1;2

Ji', Ji= functions of nondimensional frequency a0 [Eq. (5.5)], 
Poisson's ratio, and stress distribution at the base 

(5.108) 

(5.109) 

(5.110) 
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5 I Foundation Vibration 

The dynamic soil reaction on the sides can be obtained as 

ID/ Nz(t) =
0 

s(z,t)dz (5.111) 

wheres is the dynamic reaction per unit depth of embedment. 
If s is considered to be independent of depth (Baranov, 1967), thens = s(t), 

or 

where 

and 

So 

s(t) = Gs(S1 + iS2 )z(t) (5.112) 

(5.113a) 

(5.113b) 

JO ( a0 ), 11 ( a0 ) = Bessel functions of the first kind of order 
0 and 1, respectively 

Y0 ( a0 ), Yi ( a0 ) = Bessel functions of the second kind of order 
0 and 1, respectively 

Nz (t) = f :1 Gs(S1 + iS2 )z(t)dz = GsD1 (S1 + iS2 )z(t) 

Now, combining Eqs. (5.107), (5.108), and (5.114) 

(5.114) 

mz (t) + Gr0 [C1 + iC2 + Gs Di (S1 + iS2 )]z(t)
G ro 

= Q(t) = Q0 e imt = Q0 (cos mt+ i sin mt) 

The steady-state response is 

z(t) = ze imt

(5.115) 

(5.116) 

In the preceding two equations, Q0 and z are, respectively, the real force ampli
tudes and real response. The relationships for the spring constant and the damp
ing coefficient can thus be derived as 

z =Gro C1 +---S1 

k 
( 

Gs D1 J
G ro 

(5.117) 

(5.118) 
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5.12 Vertical Vibration of Rigid Cylindrical Foundations 

Note that kz and cz , as expressed by the two preceding relationships, are fre
quency dependent . However, without losing much accuracy, one can assume that 

-

C1 = C1 = constant 

S1 = S1 = constant 
- -

C2 = aoC2 ( where C2 is a constant) 
- -

S2 = a0S2 (where S2 is a constant) 

When the preceding assumptions are substituted into Eqs. (5.117) and (5.118), 
one obtains the frequency-independent kz and cz as follows: 

Hence, the damping ratio can be given as 

where b = mass ratio=_!!!_ [Eq. (5.4)] 
prJ 

- - -

(5.119) 

(5.120) 

(5.121) 

The values of C1 , C2 , S1, and S2 (Novak and Beredugo, 1972) are given in Table 5. 6. 
- - -

Table 5.6 Values of Ci , C2 , S1, and S2

Poisson's ratio, µ Cf Ci Sf st 
0.0 3.9 3.5 2.7 6.7 

0.25 5.2 5.0 2.7 6.7 

0.5 7.5 6.8 2.7 6.7 

a Validity range: 0 :s ao :s 1.5 

b Validity range: 0 :s ao :s 2 

Once the spring constant, dashpot coefficient, and the damping ratio are 
determined, the foundation response (natural frequency, amplitude of vibration 
at resonance and at frequencies other than the resonance) can be calculated using 
the formulae given below. 
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5 I Foundation Vibration 

Undamped natural frequency: 

f, _llfz 
n-- -

21t m

Amplitude of vibration at resonance: 

A = Qo 1 (for constant force excitation) z kz 2Dz
�l - D; 

A = mie 1 (for rotating mass excitation) 
z m 2Dz �l-D; 

Amplitude of vibration at frequency other than resonance: 

Az = 
� 

Qo/kz (for constant force excitation) 
[ 1 - (CO2/ co;) J + 4D; (CO2/ co;)

( )( )2 m1e m CO COn . . . Az = 
� 

/ / (for rotatmg mass exc1tat10n) 
[ 1- ( co2 /co�) J + 4D; ( co 2 /co�) 

The natural frequency of the foundation-soil system increases and its amplitude 
of vibration decreases, if depth of embedment is taken into account. 

mJ SLIDING VIBRATION OF RIGID

CYLINDRICAL FOUNDATIONS 

Figure 5 .42 shows an embedded rigid cylindrical foundation subjected to sliding 
vibration. The response of this type of system was analyzed by Beredugo and 
Novak (1972). The frequency-independent spring constant and dashpot coeffi
cient suggested by them are as follows: 

(5.122) 

(5.123) 
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5.13 Sliding Vibration of Rigid Cylindrical Foundations 

The variation of C
x 1 , C

x2 , S
x 1 , and S

x2 as evaluated by Beredugo and Novak are 
as follows: 

and 

Poisson's ratio µ Parameter 

0 Cxi = 4.3 Cx2 = 2.70

0.5 Cx1 = 5.1 Cx2 = 3.15

0 Sx1 = 3.6 Sx2 = 8.20

0.25 Sx1 =4.0 Sx2 = 9.10

0.4 Sx1 = 4.1 Sx2 = 10.6

The undamped frequency of vibration for this case can be given as 

OJn = � 

f, =-1 {kx 
n 21t�-;;; 

The damping ratio can be calculated as 

Side layer 

Gs 

Ps 

Elastic half-space 

G 

p 

I 

Mass=m 

----+-- Rx(t) 

T 

z 

: :·_ ... 
·,· 

I 

Figure 5.42 Embedded rigid cylindrical foundation-horizontal vibration 
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5 I Foundation Vibration 

Once Wn and Dx are calculated, the amplitudes of vibration can be estimated
using Eqs. (5.58), (5.59), (5.60), and (5.61). 

El9 ROCKING VIBRATION OF RIGID CYLINDRICAL

FOUNDATIONS 

Beredugo and Novak (1972) analyzed the problem of rocking vibration of rigid 
cylindrical foundations, as shown in Figure 5.43. Based on their analysis, the 
frequency-independent spring constant and dashpot coefficient can be given as 

and 

3 [- Gs D 1 (- D} - J] ke =Gro C01 +-- S01 +-
2 

Sx1 
G r0

3r0

4 
r::;=j[- Gs D1 (- D} - J] Ce = ro '\/PG C02 +-- S02 +-

2 
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Figure 5.43 Embedded rigid cylindrical foundation-rocking vibration 

(5.124) 

(5.125) 
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5.15 Torsional Vibration of Rigid Cylindrical Foundations 

For this problem, the undamped natural frequency is 

w = 
{ke 

n �Jo 

For the definition of /0, see Eq. (5.40). The damping ratio is 

D 
_ Ce

0

- 2)kelo

The amplitudes of vibration can be calculated using Eqs. (5.46), (5.47), 
(5.48), and (5.49). 

- -

The variation of Sx1, and Sx2 was given in the preceding section. Forµ= 0, 

and, for any value ofµ,

- -

C01 = 2.5 C02 = 0.43 

S01 = 2.5 S02 = 1.8 

111.m TORSIONAL VIBRATION OF RIGID

CYLINDRICAL FOUNDATIONS 

Figure 5.44 shows a rigid cylindrical foundation subjected to a torsional vibra
tion. Novak and Sachs (1973) evaluated the frequency-independent spnng 
constant and dashpot coefficient, and they are as follows: 

and 
ka = GrJ(Ca 1 + Gs Di Sa 1 J

G ro 

- - - -

The values of the parameters Ca1, Ca2, Sa1 and Sa2 are 

_ for O < a0 < 2.0 Ca1 = 4.3
} 

Ca2 = 0.7 

Sa1 
_

12.4
} 

Sa2 -2.0 
for O < a0 < 0.2 

Sa1 
_

10.2
} 

Sa2 -5.4 
for 0.2 < a0 < 2.0 

(5.126a) 

(5.126b) 

Once the magnitudes of ka and Ca are calculated, the undamped natural circular 
frequency can be obtained as 
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Figure 5.44 Embedded rigid cylindrical foundation-torsional vibration 

where lzz = mass moment of inertia of the foundation about the z axis 
[see Eq.(5.63)] 

The damping ratio is 

where 

(- - D1 �J
Da = (

l 
J

Ca2 + Sa2--;:;; �Gp 

2J]i; 
C- + Gs D18-

a1 
G 

al ro 

Ba
= mass ratio= lzz

5 
[see Eq.(5.66)] 

pr
o

(5.127) 

The amplitudes of vibration can be calculated using Eqs. (5.68) and (5.69) 
and Figures 5.12 and 5.13. 
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5.17 Active Isolation by Use of Open Trenches 

Effect of Layering 

In general, soils are layered in nature and shear modulus increases with depth. 
Several researchers attempted to develop approximate analytical, as well as 
numerical, solutions to calculate the vibration response of foundations on the 
surface of an incompressible soil layer for which shear modulus increases lin
early with depth. The effect of layer thickness and depth of embedment have also 
been reported in the literature. It is generally concluded that omission of layer
ing in theoretical solutions leads to underestimation of vibration amplitudes. 
Parametric studies are also reported by considering soil as a two layer system, 
the bottom layer being an elastic half-space. The presence of rigid layer below 
the elastic layer produces a stiffening effect and increases the natural frequency. 

Vibration Screening 

In Section 5.4, the allowable vertical vibration amplitudes for machine foundation 
were considered. It is sometimes possible that, for some rugged vibratory equip
ment, the intensity of vibration may not be objectionable for the equipment itself. 
However, the vibration may not be within a tolerable limit for sensitive equipment 
nearby. Under these circumstances it is desirable to control the vibration energy 
reaching the sensitive zone. This is referred to as vibration screening. It needs to be 
kept in mind that most of the vibratory energy affecting structures nearby is car
ried by Rayleigh (surface) waves traveling from the source of vibration. Effective 
screening of vibration may be achieved by proper interception, scattering, and dif-
fraction of surf ace waves using barriers such as trenches, sheet pile walls, and piles. 

l:lm ACTIVE AND PASSIVE ISOLATION: DEFINITIONS

While studying the problem of vibration screening, it is convenient to group the 
screening problems into two major categories. 

Active Isolation: Active isolation involves screening at the source of vibra
tion, as shown in Figure 5.45, in which a circular trench of radius Rand depth H 
surrounds the foundation that is the source of disturbance. 

Passive Isolation: The passive isolation process involves providing a barrier 
at a point remote from the source of disturbance but near a site where vibration 
has to be reduced. An example of this is shown in Figure 5.46, in which an open 

trench of length Land depth His used near a sensitive instrument foundation to 
protect if from damage. 

EIIJ ACTIVE ISOLATION BY USE OF OPEN TRENCHES

Woods ( 1968) reported the results of a field investigation for active isolation 
using open trenches. The field tests were conducted at a site with a deep stratum 
of silty sand. The experimental study consisted of applying vertical vibrations 
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Figure 5.45 Schematic diagram of vibration isolation using a circular trench 
surrounding the source of vibration for active isolation 
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Figure 5.46 Passive isolation by using an open trench 

Equipment to 
be protected 

by a small vibrator (80.1 N maximum force) resting on a circular pad. Trenches 
were constructed around the circular pad to screen the surface displacement due 
to the surface waves. Vertical velocity transducers were used for measurement of 
surf ace displacement around the trench over a 7 .62 m diameter area. Other con
ditions remaining the same, measurements for the surface displacement due to 
the vibration of the circular pad were also taken without the trenches surround
ing the pad. Some results of this investigation are shown in Figure 5.47 in the 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



0= 360° 

H - = 1.452
A,-
R - =0.726
A,-

0= 180° 

H - =0.596 

R 

� 
=0.596 

1/•· -. 

D 
ARF 

> 1.25

, .. ··· :· 
, ..... -.·.·· ... 

• I • #' 

D 
ARF 

1.25-0.5 

I• •t .... • 

, � .. 

(a) 

D D ' 

' 

. 

ARF ARF ARF 

0.5--0.25 0.25--0.125 < 0.125 

(b) 

Figure 5.47 Amplitude-reduction-factor contour diagrams (from Woods, 1968) 

Source: Woods, R.D. (1968). "Screening of Surface Waves in Soils," Journal of the Soil Mechanics 

and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 951-979. With permission from ASCE. 
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5 I Foundation Vibration 

form of amplitude-reduction-factor contour diagrams. The amplitude-reduction 
factor (ARF) is defined as 

ARF = 
vertical amplitude of vibration with trench 

vertical amplitude of vibration without trench 
(5.128) 

Also note that in Figure 5.47, 0 is the angular length of the trench (in degrees) 
and Ar is the length of Rayleigh waves. The value of Ar for a given frequency of 
vibration at a given site can be determined in a manner similar to that described 
in Section 4.15. 

The tests of Woods (1968) were conducted for RI Ar = 0.222 to 0.910 and 
HI Ar = 0.222 to 1.82. For satisfactory isolation, Woods defined the ARF to be less 
than or equal to 0.25. The conclusions of this study can be summarized as follows: 

1. For 0 =360°, a minimum value of HI A
r 

=0.6 is required to achieve ARFs
less than or equal to 0.25.

2. For 360° > 0 > 90°, the screened zone may be defined as an area outside the
trench bounded on the sides by radial lines from the center of the source
through points 45° from the ends of the trench. To obtain ARFs less than or
equal to 0.25 in the screened zone, a minimum value of HI Ar = 0.6 is required.

3. For 0 < 90°, effective screen of vibration by trenches cannot be obtained.

llEJ PASSIVE ISOLATION BY USE OF OPEN TRENCHES

Woods ( 1968) also investigated the case of passive isolation in the field using open 
trenches. The plan view of the field site layout used for screening at a distance is 
shown in Figure 5.48. The layout consisted of two vibrator exciter footings (used 
one at a time for the tests), a trench barrier, and 7 5 pickup benches. For these 
tests, it was assumed that the zone screened by the trench will be symmetrical 
about the 0° line. The variables used to study the passive isolation tests were: 

• Distance from the source of vibration to the center of the open trench, R
• Length of the trench, L
• Width of the trench, W, and
• Depth of the trench, H.

In this investigation, the value of RI Ar was varied from 2.22 to 9 .10. For
satisfactory isolation, it was defined that ARF's [Eq. (5.128)] should be less than 
or equal to 0.25 in a semicircular zone of radius Ll2 behind the trench. 

Figure 5.49 shows the ARF contour diagram for one of these tests. The con
clusions of this study may be summarized as follows: 

1. For a satisfactory passive isolation (for R = 2Ar to about 7 Ar), the minimum
trench depth H should be about 1.2Ar to 1.5Ar. This means that, in general,
HI Ar should be about 1.33.
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5.19 Passive Isolation by Use of Piles 
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Figure 5.48 Plan view of the field site layout for passive isolation by use of 
open trench (from Woods, 1968) 

Source: Woods, R.D. (1968). "Screening of Surface Waves in Soils," Journal of the Soil Mechanics 

and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 951-979. With permission from ASCE. 

2. The trench width Whas practically no influence on the effectiveness of screening.
3. To maintain the same degree of isolation, the least area of the trench in the

vertical direction (that is LH =Ar) should be as follows:

Ar = 2.5 A,; at R = 2A, 

and 

Ar = 6. 0 A; at R = 7 A,

mJ PASSIVE ISOLATION BY USE OF PILES

There are several situations where Rayleigh waves that emanate from manufac
tured sources may be in the range of 40 to 50 m. For these types of problems, a 
trench depth of 1.33 times 60 to 75 m is needed for effective passive isolation. Open 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



5 I Foundation Vibration 

ARF 

> 1.25

ARF 

1.25-0.5 

ARF 

0.5-0.25 

ARF 

0.25-0.125 

ARF 

< 0.125 

D 

D 

D 

Center 
line 

>I
�-��-------- 

• .. .  · . .. ·· .. ···. , . 

. . . . . 

. . ,_- .. · . . . . · •; .. ·

. . . . 
. . . . . 

. · .  . . . 
· . .  · . ... ·.·· .. ·. - - . .  · - -

1.5 m 
H 
T 

=2.38 
r 

L - =4.76
A,.

R 
� =5.96

W =0.17
A,. 

Figure 5.49 Amplitude-reduction-factor contour diagram for passive isolation 
(from Woods, 1968) 

Source: Woods, R.D. (1968). "Screening of Surface Waves in Soils," Journal of the Soil Mechanics 
and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 951-979. With permission from ASCE. 

trenches or bentonite-slurry-filled trenches deep enough to be effective are not 
practical. At the same time, solidification of bentonite slurry will also pose a prob
lem. For this reason, possible use of rows of piles as an energy barrier was stud
ied by Woods, Barnett, and Sagesser (1974) and Liao and Sangrey (1978). Woods, 
Barnett, and Sagesser used the principle of holography and observed vibrations in 
a model half-space in order to develop the criteria for void cylindrical obstacles for 
passive isolation (Figure 5.50). The model half-space was prepared in a fine sand 
medium in a box. In Figure 5.50, the diameter of the cylindrical obstacle is D, and 
the net space for the energy to penetrate between two consecutive void obstacles 
is equal to Sn . The numerical evaluation of the barrier effectiveness was made by 
obtaining the average ARFs from several lines beyond the barrier in a section +15°
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5.19 Passive Isolation by Use of Piles 
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Figure 5.50 Void cylindrical obstacles for passive isolation 

on both sides of an axis through the source of disturbance and perpendicular to 
the barrier. For all tests, HI A, and LI A, were kept at 1.4 and 2.5, respectively. These 
values of HI A,, and LI A, are similar to those suggested in Section 5.18 for open 
trenches. A nondimensional plot of the isolation effectiveness developed from these 
tests is given in Figure 5.51. The isolation effectiveness is defined as 

Effectiveness = 1 - ARF (5.128) 

Based on these test results, Woods, Barnett, and Sagesser (1974) suggested that a 
row of void cylindrical holes may act as an isolation barrier if 

D 1 
(5.129) ->-

A, 6 

and 

Sn 1 
(5.130) -<-

A, 4 

Liao and Sangrey (1978) used an acoustic model employing sound waves 
in a fluid medium to evaluate the possibility of the use of rows of piles as pas
sive isolation barriers. Model piles for the tests were made from aluminum, steel, 
styrof oam, and polystyrene plastic. Based on their study, Liao and Sangrey 
determined that Eqs. (5.129) and (5.130) suggested by Woods, Barnett, and Sag
esser are generally valid. They also determined that Sn

= 0.4A, may be the upper 
limit for a barrier to have some effectiveness. However, the degree of effectiveness 
of the barrier will depend on whether the piles are soft or hard compared to the 
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Figure 5.51 Isolation effectiveness as a function of hole diameter and spacing 
(redrawn from Woods, Barnett, and Sagesser, 1974) 

Source: Woods, R.D. (1968). "Screening of Surface Waves in Soils," Journal of the Soil Mechanics 

and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 951-979. With permission from ASCE. 

soil in which they are embedded. The degree of softness or hardness may be 
determined by the term impedance ratio (IR), defined as 

IR= 
PPVr(P) 

PsVr(S) 
(5.131) 

where PP and Ps = the densities of the pile material and soil, respectively 
v,(P) and v,(S) = the velocities of Rayleigh waves in the pile material 

and soil, respectively 

The piles are considered soft if IR is less than 1 and hard if IR is greater than 1. 
Soft piles are more efficient as isolation barriers compared to hard piles. 
Figure 5.52 gives a general range of the Rayleigh wave impedance ( = pv,) for 
various soils and pile materials. For a more detailed discussion, the reader is 
ref erred to the original paper of Liao and Sangrey. 

PROBLEMS 

5.1 A concrete foundation is 2. 5 m in diameter. The foundation is supporting 
a machine. The total weight of the machine and the foundation is 270 kN. 
The machine imparts a vertical vibrating force Q = Q0 sin OJ t. Given: Q0 =

27 kN (not frequency dependent). The operating frequency is 150 cpm. 
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Figure 5.52 Estimated values of Rayleigh wave impedance for various soils 

and pile materials (from Liao and Sangrey, 1978) 

Source: Liao, S., and Sangrey, D.A. (1978). "Use of Piles as Isolation Barriers," Journal of the Geotechnical 

Engineering Division, ASCE, Vol . 104, No. GT9, pp. 1139-1152. With permission fromASCE. 

For the soil supporting the foundation, unit weight = 19.5 kN /m3, 
shear modulus = 45000 kPa, and Poisson' ratio = 0.3. Determine: 

a. resonant frequency;

b. the amplitude of vertical vibration at resonant frequency; and
c. the amplitude of vertical vibration at the operating frequency.

Use the procedure described in Section 5.4 

5.2 Redo Problem 5 .1 assuming the foundation is 2. 5 m X 2 m in plan. 
Assume the total weight of the foundation and the machine is the same 

as in Problem 5.1. Use the procedure described in Section 5.4 

5.3 A concrete foundation (unit weight = 23.58 kN/m3 ) supporting a 
machine is 3. 5 m X 2. 5 m in plan and is subjected to a sinusoidal vibrating 
force (vertical) having an amplitude of 10 kN (not frequency dependent). 
The operating frequency is 2000 cpm. The weight of the machine and 
foundation is 400 kN. The soil properties are unit weight = 18 kN/m3 , 

shear modulus = 38,000 kPa, and Poisson' ratio = 0.25. Determine 
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5 I Foundation Vibration 

a. the resonant frequency of the foundation, and
b. the amplitude of vertical vibration at operating frequency.

Use the procedure described in Section 5.4 

5.4 Consider the case of a single-cylinder reciprocating engine (Figure 
5.15a). For the engine, operating speed= 1000 cpm, crank(r1 ) = 90 mm, 
connecting rod ( r2 ) = 3 50 mm, weight of the engine = 20 kN and recip
rocating weight = 65 N.  The engine is supported by a concrete foundation 
block of 3 m X 2 m X 1.5 m (L X BX H). The unit weight of concrete is 
23.58 kN/m3 • The properties of the soil supporting the foundation are 
unit weight = 19 kN/m3, G = 24,000 kPa, andµ = 0.25. Calculate 
a. the resonant frequency, and
b. the amplitude of vertical vibration at resonance.

Use the procedure described in Section 5.4 

5.5 Refer to Problem 5.4 . What will be the amplitude of vibration at oper
ating frequency? 

5.6 Solve Problem 5.2, parts (b) and (c) by assuming that the Poisson's ratio 
isµ= 0.25. 

5.7 The concrete foundation (unit weight = 23.58 kN/m3 ) of a machine 
has the following dimensions (refer to Figure 5.18): L = 3 m,B = 4 m, 
height of the foundation = 1.5 m. The foundation is subjected to a sinu
soidal horizontal force from the machine having an amplitude of 10 kN 
at a height of 2 m measured from the base of the foundation. The soil 
supporting the foundation is sandy clay. Given G = 30,000 kPa, µ = 0, 
andp = 1700 kg/m3

• Determine 
a. the resonant frequency for the rocking mode of vibration of the

foundation, and
b. the amplitude of rocking vibration at resonance.

Use the procedure described in Section 5. 8 

(Note: The amplitude of horizontal force is not frequency dependent. 
Neglect the moment of inertia of the machine.) 

5.8 Solve Problem 5.7 assuming that the horizontal force is frequency depen
dent. The amplitude of the force at an operating speed of 800 cpm is 20 kN. 

5.9 Ref er to Problem 5. 7. Determine 
a. the resonant frequency for the sliding mode of vibration, and
b. amplitude for the sliding mode of vibration at resonance.

Assume the weight of the machinery on the foundation to be 100 kN. 
Useµ= 0.2, and the procedure out lined in Section 5.6 . 
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Problems 

5.10 Repeat Problem 5.9 assuming that the horizontal force is frequency 
dependent. The amplitude of the horizontal force at an operating fre
quency of 800 cpm is 40 kN. The weight of the machinery of the foun
dation is 100 kN. 

5.11 Aconcretefoundation(unit weight = 23.5 kN/m3 )supportinga machine 
has the fallowing dimensions: length = 5 m, width = 4 m, height = 2 m. 
The machine imparts a torque Ton the foundation such that T = T0e

imt
.

Given T0 
= 3000 N · m. The mass moment of inertia of the machine 

about the vertical axis passing through the center of gravity of the 
foundation is 75 X 103 kg-m2

• The soil has the following properties: 
µ = 0.25, unit weight = 18 kN/m3, and G = 28,000 kPa . Determine 
a. the resonant frequency for the torsional mode of vibration, and
b. angular deflection at resonance. 

5.12 Refer to Figure 5.41 for the vertical foundation of a rigid cylindrical 
concrete foundation. Given the following: 

Foundation radius = 1.3 m; height = 1.5 m 

depth of embedment,D1 
= 1 m; 

unit weight of concrete = 24 kN /m3

Vibrating machine Weight = 100 kN ; amplitude of vibrating 

force = 10 kN (not frequency dependent); 
operating speed= 600 cpm 

Soil Gs 
= 22 Mpa; G = 20.5 MPa; µ = 0.25 unit weight, 

Ys = 18.5 kN/m3 (for side layer); unit weight, 
y = 19.5 kN/m3 (below the base) 

Determine: 
a. damped natural frequency;
b. amplitude of vertical vibration at resonance; and
c. amplitude of vibration at operating speed.

5.13 Solve Problem 5.12 with the following changes: 

Concrete foundation 

length= 2 m 

width= 1.5 m 

height = 1.5 m 

depth of embedment, D
r

= 1.2 m 

unit weight of concrete = 24 kN/m3
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5 I Foundation Vibration 

Vibrating machine 

weight = 90 kN 

frequency-dependent amplitude of vibrating force = 9 kN 

at an operating speed of 500 cpm 

5.14 Refer to Figure 5.42 for the sliding vibration of a rigid cylindrical foun
dation. Given the fallowing: 

Concrete foundation radius = 3m; height = 4 m; 
depth of embedment, D1 = 2.5 m; unit weight of concrete= 24 kN/m3

Vibrating machine weight= 100 kN; frequency-dependent 
unbalanced force at an operating frequency of 600 cpm = 40 kN 

Soil Gs
= 16,000 kPa; G = 18,000kPa, µ = 0; unit weight, 

Ys 
= 17.8 kN/m3 (for side layer); unit weight, y = 18.8 kN /m3 (below 

the base) 

Determine 
a. the damped natural frequency;
b. the amplitude of horizontal vibration at resonance; and
c. the amplitude of horizontal vibration at operating speed.

References 

Arnold, R. N., Bycroft, G. N., and Warburton, G. B. (1955). "Forced Vibrations of a Body on an 

Infinite Elastic Solid," Journal of Applied Mechanics, ASME, Vol. 77, pp. 391-401. 

Baranov, V. A. (1967). "On the Calculation of Excited Vibrations of an Embedded Foundation," 

(in Russian), Vopr. Dyn. Prochn., Vol. 14, pp. 195-209 

Barkan, D. D. (1962) Dynamic Bases and Foundations, McGraw-Hill Book Company, New York. 

Beredugo, Y 0., and Novak, M. (1972). "Coupled Horizontal and Rocking Vibration of Embed

ded Footing," Canadian Geotechnical Journal, Vol. 9, No. 4, pp. 477-497 . 

Borowicka, H. (1943). "Uber Ausmittig Belastere Starre Platten auf Elastischisotropem Undergr

und," Ingenieur-Archiv, Berlin, Vol . 1, pp. 1-8. 

Bycroft, G. N. (1956). "Forced Vibrations of a Rigid Circular Plate on a Semi-Infinite Elastic 

Space and on an Elastic Stratum," Philosophical Transactions of the Royal Society, London, 

Ser. A., Vol . 248, pp. 327-368. 

Dobry, R ., and Gazetas, G. (1986). "Dynamic Response of Arbitrarily Shaped Foundations," 

Journal of the Geotechnical Engineering Division, ASCE, Vol .  112, No. GT2, pp. 109-135. 

Fry, Z. B. (1963). "Report 1: Development and Evaluation of Soil Bearing Capacity, Foundation 

of Structures, Field Vibratory Test Data," Technical Report No. 3-362, US Army Engineers 

Waterways Experiment Station, Vicksburg, Mississippi . 

Gorbunov-Possadov, M. I., and Serebrajanyi, R.  V. (1961). "Design of Structures upon Elastic 

Foundations," Proceedings, 5th International Conference on Soil Mechanics and Foundation 

Engineering, Vol. 1, pp. 643-648. 

Hall, J. R. Jr. (1967). "Coupled Rocking and Sliding Oscillations of Rigid Circular Footings," 

Proceedings, International Symposium on Wave Propagation and Dynamic Properties of 

Earth Materials, Albuquerque, New Mexico, pp. 139-148. 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



References 

Hsieh, T. K. (1962), "Foundation Vibrations," Proceedings, Institute of Civil Engineers, London, 

Vol. 22, pp. 211-226. 

Lamb, H. (1904). "On the Propagation of Tremors over the Surface of an Elastic Solid," 

Philosophical Transactions of the Royal Society, London, Ser. A., Vol. 203, pp. 1-42. 

Liao, S., and Sangrey, D. A. (1978). "Use of Piles an Isolation Barriers," Journal of the Geotechni

cal Engineering Division, ASCE, Vol. 104, No. GT9, pp. 1139-1152. 

Lysmer, J., and Richart, F. E., Jr. (1966). "Dynamic Response to Footings to Vertical Loading," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SMl ,  pp. 65-91. 

With permission from ASCE. 

Novak, M., and Beredugo, Y 0. (1972). "Vertical Vibration of Embedded Footings," Journal of 

the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM12, pp. 1291-1310. 

Novak, M., and Sachs, K. (1973). "Torsional and Coupled V ibrations of Embedded Footings," 

International Journal of Earthquake Engineering and Structural Dynamics, Vol. 2, No. 1, 

pp. 11-33. 

Prakash, S., and Puri, V. K. (1981 ). "Observed and Predicted Response of a Machine Foundation," 

Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, 

Strockholm, Vol. 3, pp. 269-272. 

Prakash, S., and Puri , V. K. (1988). Foundations for Machines: Analysis and Design, John Wiley 

and Sons, New York. 

Quinlan, P. M. (1953). "The Elastic Theory of Soil Dynamics," Symposium on Dynamic Testing 

of Soils, Special Technical Publication 156, ASTM, pp. 3-34. 

Reissner, E. (1936). "Stationare, axialsymmetrische <lurch eine Schuttelnde Masseerregte Schwi

ngungen eines homogenen elastischen halbraumes," Ingenieur-Archiv., Vol. 7, No. 6. 

pp. 381-396. 

Reissner, E. (1937). "Freie and erzwungene Torsionschwingungen des elastischen halbraumes," 

Ingenieur-Archiv., Vol. 8, No. 4, pp. 229-245. 

Reissner, E., and Sagochi , H. F. (1944). "Forced Torsional Oscillations of an Elastic Half Space," 

Journal of Applied Physics, Vol. 15, pp. 652---662. 

Richart, F. E., Jr. (1962). "Foundation Vibrations," Transactions, ASCE, Vol. 127, Part 1, pp. 863-

898. With permission from ASCE.

Richart, F. E., Jr., Hall, J. R., and Woods, R. D. (1970). Vibration of Soils and Foundations, 

Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 

Richart. F. E., Jr., and Whitman, R. V. (1967). "Comparison of Footing Foundation Tests with 

Theory," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 93, No. SM6, pp. 143-167. 

With permission from ASCE. 

Sung, T. Y (1953). "Vibration in Semi-Infinite Solids Due to Periodic Surface Loadings," Sympo

sium on Dynamic Testing of Soils, Special Technical Publication No. 156, ASTM, pp. 35-54. 

Timoshenko, S. P., and Goodier, J. H. (1951). Theory of Elasticity. McGraw-Hill Book Company, 

New York. 

Whitman, R. V., and Richart, F. E., Jr. (1967). "Design Procedures for Dynamically Loaded Foun

dations," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6. 

pp. 169-193. 

Woods, R. D. (1968). "Screening of Surface Waves in Soils," Journal of the Soil Mechanics and 

Foundations Division, ASCE, Vol. 94, No. SM4, pp. 951-979. 

Woods, R. D., Barnett, N. E., and Sagesser, R. (1974). "Holography - A New Tool for Soil 

Dynamics," Journal of Geotechnical Engineering Division, ASCE, Vol. 100, No. GT l l , 

pp. 1231-1247. 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



Dynamic Bearing Capacity 

of Shallow Foundations 

ID INTRODUCTION

The static bearing capacity of shallow foundations has been extensively studied 

and reported in literature. However, foundations can be subjected to single pulse 

dynamic loads, which may be in vertical or horizontal directions. The dynamic 
loads due to nuclear blasts are mainly vertical. Horizontal dynamic loads on 
foundations are due mostly to earthquakes. These types of loading may induce 

large permanent deformation in foundations. Isolated column footings, strip 
footings, mat footings, and even pile foundations all may fail during seismic 

events. Such failures are generally attributed to liquefaction (a condition where 

the mean effective stress in a saturated soil reduces to zero, as explained in Chap

ter 10). However, a number of failures have occurred where field conditions indi
cate there was only partial saturation or a dense soil , and therefore liquefaction 
alone is a very unlikely explanation. Rather, the reason for the seismic settle

ments of these foundations seems to be that the bearing capacity was reduced 
(Richards, Elms, and Budhu, 1993). 

Though a large amount of information on the dynamic bearing capacity of 
foundations is available in literature, it is mostly based on theoretical procedures 

and not supported by field data. Hence, most of such published studies are yet to 

enter the design offices. Most of the important works on this topic now available 

in the literature are summarized in this chapter. 
However, one must keep in mind that, during the analysis of the time

dependent motion of a foundation subjected to dynamic loading or estimating 

the bearing capacity under dynamic conditions, several factors need to be con

sidered. Most important of these factors are 

a. nature of variation of the magnitude of the loading pulse;

b. duration of the pulse; and

c. strain-rate response of the soil during deformation.
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6.2 Bearing Capacity in Sand 

Ultimate Dynamic Bearing Capacity 

ID BEARING CAPACITY IN SAND

The static ultimate bearing capacity of shallow foundations subjected to vertical 
loading (Figure 6.1) can be given by the equation 

where 

1 
qu = cNcScdc + qN

q
S

q
d

q 
+ -y BN

y
S

y
d

y2 

qu = ultimate load per unit area of the foundation 
r = effective unit weight of soil 

q = yD1
D 1 = depth of foundation 

B = width of foundation 
c = cohesion of soil 

(6.1) 

Ne , N
q
, N

y
= bearing capacity factors which are only functions of the soil 

friction angle </> 

Sc , Sq
, S

y 
= shape factors 

de , dq
, d

y 
= depth factors 

In sand, with c = 0, Eq. ( 6.1) becomes 

(6.2) 

The values of N
q 

(Reissner, 1924), Ne (Prandtl, 1921), and N
y 

(Caquot and 
Kerisel, 1953; Vesic, 1973) can be represented by the following equations: 

N
q 

= e"'"'" tan2 ( 45 + �)

1 
45--¢ 

2 
1 

45- -¢
2

surface 

Ultimate 

load 

----B --+1 

(6.3) 

surface 

Figure 6.1 Static ultimate bearing capacity of continuous shallow foundations 
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6 I Dynamic Bearing Capacity of Shallow Foundations 

Ne
= (N

q 
- l)cot </> (6.4) 

N
y

= 2(N
q 

+ l)tan</) (6.5) 

where cp is the angle of friction of soil. The values of Ne, Nq
, and N

y 
for various 

soil friction angles are given in Table 6.1. 

Table 6.1 Valuesa of Bearing Capacity Factors, Ne, Nq 
and N

y

</> (deg) Ne Nq 
Nr cf, (deg) Ne Nq 

Nr 

0 5.14 1.00 0.00 26 22.25 11.85 12.54 

27 23.94 13.20 14.47 

1 5.38 1.09 0.07 28 25.80 14.72 16.72 

2 5.63 1.20 0.15 29 27.86 16.44 19.34 

3 5.90 1.31 0.24 30 30.14 18.40 22.40 

4 6.19 1.43 0.34 

5 6.49 1.57 0.45 31 32.67 20.63 25.99 

32 35.49 23.18 30.22 

6 6.81 1.72 0.57 33 38.64 26.09 35.19 

7 7.16 1.88 0.71 34 42.16 29.44 41.06 

8 7.53 2.06 0.86 35 46.12 33.30 48.03 

9 7.92 2.25 1.03 

10 8.35 2.47 1.22 36 50.59 37.75 56.31 

37 55.63 42.92 66.19 

11 8.80 2.71 1.44 38 61.35 48.93 78.03 

12 9.28 2.97 1.69 39 67.87 55.96 92.25 

13 9.81 3.26 1.97 40 75.31 64.20 109.41 

14 10.37 3.59 2.29 

15 10.98 3.94 2.65 41 83.86 73.90 130.22 

42 93.71 85.38 155.55 

16 11.63 4.34 3.06 43 105.11 99.02 186.54 

17 12.34 4.77 3.53 44 118.37 115.31 224.64 

18 13.10 5.26 4.07 45 133.88 134.88 271.76 

19 13.93 5.80 4.68 

20 14.83 6.40 5.39 46 152.10 158.51 330.35 

47 173.64 187.21 403.67 

21 15.82 7.07 6.20 48 199.26 222.31 496.01 

22 16.88 7.82 7.13 49 229.93 265.51 613.16 

23 18.05 8.66 8.20 50 266.89 319.07 762.89 

24 19.32 9.60 9.44 

25 20.72 10.66 10.88 
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6.2 Bearing Capacity in Sand 

The shape and depth factors have been proposed by DeBeer (1970) and Brinch
Hanson (1970): 

Shape Factors 

s, =1+(1)(:: J 

s. = 1 +(1}anqi 

Sr = 1- 0.4(1)

where L = length of the rectangular foundation 

Depth Factors 

For Di< 1, 
B 

For Di >1 
B 

For 

For 

D1 
< 1, 

B 

D1 >1 
B 

d, =1+0.4( �) 

d, = 1 + 0.4 tan- 1 ( �) 
radian 

d• = 1 + 2 tan qi(l - sin qi )2 ( � ) 

d• = 1 + 2 tan qi(l - sin qi)2 tan- 1 ( �)

radian 

d =1 
r 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11 ) 

(6.12) 

(6.13) 

In Eqs. (6.6)-(6.12), Band Lare the width and length of rectangular founda
tions, respectively. For circular foundations, B is the diameter, and B = L. 

The preceding equations for static ultimate bearing capacity evaluation are
valid for dense sands where the failure surface in the soil extends to the ground sur
face as shown in Figure 6.1 . This is what is referred to as the case of general shear
failure. For shallow foundations (i.e., D1 / B < 1), if the relative density of granular
soils Rn is less than about 70%, local or punching shear failure may occur. Hence,
for static ultimate bearing capacity calculation, if O < Rn < 0.67, the values of (/)
in Eqs. (6.3)-(6.13) should be replaced by the modified friction angle (vesic, 1973)

(/)' = tan- 1[( 0.67 + Rn - 0.75Ri)tan(/)] (6.14) 

The facts just described relate to the static bearing capacity of shallow foun
dations. However, when load is applied rapidly to a foundation to cause fail
ure, the ultimate bearing capacity changes somewhat. This fact has been shown 
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6 I Dynamic Bearing Capacity of Shallow Foundations 

experimentally by Vesic, Banks, and Woodward (1965), who conducted several 
laboratory model tests with a 101.6 mm diameter rigid rough model footing 
placed on the surface of a dense river sand (i.e., D1 = 0), both dry and saturated. 
The rate of loading to cause failure was varied in a range of 2.54 X 10-4 mm/s to 
over 254 mm/s. Hence, the rate was in the range of static (2.54 X 10-4 mm/s) to 
impact (254 mm/s) loading conditions. All but the four most rapid tests in sub
merged sand [loading velocity, (14.63-20.07 mm/s)] showed peak failure loads as 
obtained in the case of general shear failure of soil. 

The four most rapid tests in submerged sand gave the load-displacement 
plots as obtained in the case of punching shear failure, where the failure planes 
do not extend to the ground surf ace. 

or 

For surface foundations (D1 = 0) in sand, q = 0 and d
r 

= 1. So 

1 
qu = -yBNrSr

(6.15) 
2 

qu =NS 
(l/2)y B r r (6.16) 

The variation of qu /(l/2)y B with load velocity for the tests of Vesic, Banks, 
and Woodward (1965) is shown in Figure 6.2. It may be seen that, for any given 

500 

:.::;:,.... 
II 300 

�1 � 
� ...... IN

Dry sand 

100-�-----------------------�

0.001 0.01 0.1 1 10 

Loading velocity (mm/s) 

Figure 6.2 Plot of bearing capacity factor versus loading velocity (adapted 
from Vesic, Banks, and Woodward, 1965) 

25 

Source: Based on Vesic, A.S., Banks, D.C., and Woodard, J.M. (1965). ''An Experimental Study 
of Dynamic Bearing Capacity of Footings on Sand," Proceedings, 6th International Conference on 

Soil Mechanics and Foundation Engineering, Montreal, Canada, Vol. II, pp. 209-213. 
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6.2 Bearing Capacity in Sand 

series of tests, the value of qu /(l I 2)yB gradually decreases with the loading 
velocity to a minimum value and then continues to increase. 

This, in effect, corresponds to a decrease in the angle of friction of soil by 
about 2° when the loading velocity reached a value of about 50.8 X 10-3 mm/s. 
Such effects of strain rate in reducing the angle of friction of sand has also been 
observed by Whitman and Healy (1962), as described in Chapter 4. 

Based on the experimental results available, the following general conclu
sions regarding the ultimate dynamic bearing capacity of shallow foundations in 
sand can be drawn: 

1. For a foundation resting on sand and subjected to an acceleration level of
amax < 13g, it is possible for general shear type of failure to occur in soil
(Heller, 1964).

2. For a foundation on sand subjected to an acceleration level of amax > 13g, the
nature of soil failure is by punching (Heller, 1964).

3. The difference in the nature of failure in soil is due to the inertial restraint
of the soil involved in failure during the dynamic loading. The restraint has
almost a similar effect as the overburden pressure as observed during the
dynamic loading which causes the punching shear type failure in soil.

4. The minimum value of the ultimate dynamic bearing capacity of shallow
foundations on dense sands obtained between static to impact loading range
can be estimated by using a friction angle (/Jdy

, such that (Vesic, 1973)

(/Jdy = <1>- 2° (6.17) 

The value of (/Jdy can be substituted in place of (/Jin Eqs. (6.2)-(6.13). However, if 
the soil strength parameters with proper strain rate are known from laboratory 
testing, they should be used instead of the approximate equation [Eq. (6.17)]. 

5. The increase of the ultimate bearing capacity at high loading rates as seen
in Figure 6.2 is due to the fact that the soil particles in the failure zone do
not always follow the path of least resistance. This results in a higher shear
strength of soil, which leads to a higher bearing capacity.

6. In the case of foundations resting on loose submerged sands, transient liq
uefaction effects (Chapter 10) may exist (Vesic, 1973). This may results in
unreliable prediction of ultimate bearing capacity.

7. The rapid increase of the ultimate bearing capacity in dense saturated sand
at fast loading rates is due to the development of negative pore water pres
sure in the soil.

EXAMPLE 6.1 

A square foundation with dimensions B X B has to be constructed on a dense 
sand. Its depth is D.r = l m. The unit weight and the static angle of friction of 
the soil can be assigned representative values of 18 kN/m3 and 39°, respectively. 
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6 I Dynamic Bearing Capacity of Shallow Foundations 

The foundation may occasionally be subjected to a maximum dynamic load 
of 1800 kN increasing at a moderate rate. Determine the size of the f ounda
tion using a safety factor of 3. 

SOLUTION: 

Given that� = 39° in the absence of any other experimental data, for minimum 
ultimate dynamic bearing capacity 

�dy = </) - 2° 
= 39 - 2 = 37°

From Eq. (6.2) 

1 
qu = qNqSqdq 

+ 
-r BNrSrdr
2 

q = rDr = (18)(1) = 18 kPa 

For </Jdy = 37°, Nq = 42.92 and Nr = 66.19. 

Thus 

S
9 

= 1 + (1}an I/> = 1 +tan 37°
= 1.754 

Sr 
= 1 - oA 1) = 1 - 0.4 = 0.6 

d
9 

= 1+ 2tan ef>(l -sin ef>)2 ( 1¼) 
= 1 + 2tan 37(1-sin 37)2 (!) 

= 1 + 0-�9

dr = l 

q. = (18)( 42.92)(1.754) ( 1 + 0.�9
) + � (18)(B)(66.19)(0.6)(1)

= 1355 + 323·9 
+ 357.4B

Given 

_ 1800 X 3 kP qu - B2 a

Combining Eq. (a) and (b), 

5400 
= 1355 + 323.9 + 357.4B

B2 B 

(a) 

(b) 

(c) 
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6.3 Bearing Capacity in Clay 

Following is a table to determine the value of B by trial and error. Clearly,
B::::: 1.6 m. 

B(m) 

2.0 

1.5 

1.6 

5400/B2 (kPa) 

1350 

2400 

2109 

1355 + 323.9/B + 357.4B (k.Pa) 

2331.75 

2107.00 

2133.00 

BJ BEARING CAPACITY IN CLAY

For foundations resting on saturated clays(¢= 0 and c = cu, i.e., undrained con
dition), Eq. (6.1) transforms to the form 

(Note: Nr = 0 for</)= 0 in Table 6.1) 
N

C
= 5.14 

and 

From Eq. (6.6) 

For</)= 0, 

From Eq. (6.7), 

with ¢= 0, 

N =1 
q 

s, = 1+ (1)(::) 

S =l+(B)(-1 
)=1+0.1946(B)c 

L 5.14 L 

s. =1+ (1}an¢ 

S =1 
q 

From Eqs. (6.9) and (6.10), 

d, = I + oA � ) for � < I 

d = 1 + 0.4 tan- 1 (D1) for DJ > 1 C 

B B 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 
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6 I Dynamic Bearing Capacity of Shallow Foundations 

Also, from Eqs. (6.11) and (6.12), with¢= 0, 

d
q 

= 1 

Substituting Eqs. (6.19)-(6.25) into Eq. (6.18), 

and 

q. = 5.14c. [I+ 0.1946(1) ][1 + oA 1;;)] +q for 1;; < I

(6.25) 

(6.26) 

q. = 5.14c. [ 1 + 0.1946(1) ][ 1 + 0.4tan-'( 1;;)] + q for 1;; > I (6.27) 

The ultimate bearing capacity of foundations resting on saturated clay soils
can be estimated by using Eqs. (6.26) and (6.27), provided the strain-rate effect
due to dynamic loading is taken into consideration in determination of the
undrained cohesion. Unlike the case in sand, the undrained cohesion of satu
rated clays increases with the increase of the strain rate. This fact has been dis
cussed in Chapter 4 in relation to the unconsolidated-undrained triaxial tests on 
Buckshot clay. Based on those results, Carroll (1963) suggested that Cu(dyn) / Cu(stat) 

may be approximated to be about 1. 5. 
For a given foundation, the strain rate£ can be approximated as (Figure 6.3)

Load 

.. ...: �. ' ... 

Soil 

�s I I 

L_ _______ I 

T : -----B----

2B 

I I --------------

Figure 6.3 Definition of strain rate under a foundation 
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6.5 Experimental Observation of Load-Settlement Relationship for Vertical Transient Loading 

(6.28) 

where B is the width of the foundation. 

IIJ BEHAVIOR OF FOUNDATIONS UNDER TRANSIENT

LOADS 

Triandafilidis (1965) has presented a solution for dynamic response of con
tinuous foundation supported by saturated cohesive soil(¢= 0 condition) and 
subjected to a transient load. T he rigid plastic analysis for the bearing capac
ity in cohesive soils presented by Triandafilidis (1965) has been extended for 
determination of the bearing capacity of continuous foundations resting on 
a c-¢ soil and subjected to a transient horizontal load by Prakash and Chum
mar (1967). Both these two works considered a rotational mode of failure. 
However, it is possible that a foundation may fail by vertically punching into 
the soil mass due to the application of a vertical transient load. Wallace (1961) 
has presented a procedure for the estimation of the vertical displacement of 
a continuous foundation with the assumption that the soil behaves as a rigid 
plastic material. In this analysis, the failure surface in the soil mass is assumed 
to be of similar type as suggested by Terzaghi (1943) for the evaluation of 
static bearing capacity of strip foundations. Interested readers may refer to 
these articles. 

ID EXPERIMENTAL OBSERVATION OF LOAD

SETTLEMENT RELATIONSHIP FOR VERTICAL 

TRANSIENT LOADING 

A limited number of laboratory tests for observation of load-settlement relation
ships of foundations under transient loading are available. (Cunny and Sloan, 
1961; Shenkman and McKee, 1961; Jackson and Hadala, 1964; Carroll, 1963). 
The experimental evaluations of these tests are presented in this section. 

Load-settlement observations of square model foundations resting on sand 
and clay and subjected to transient loads have been presented by Cunny and 
Sloan (1961). The model foundations were of varying sizes from 114.3-228.6 mm 
squares and were placed on the surface of the compacted soil layers. The tran
sient loads to which the foundations were subjected were of the nature shown 
in Figure 6.4. The nature of the settlement of foundations with time during 
the application of the dynamic load is also shown in the same figure. In gen
eral, during rise time (t,) of the dynamic load, the settlement of a foundation 
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Figure 6.4 Nature of dynamic load applied to laboratory model foundations 

increases rapidly. Once the peak load [0(max) ] is reached, the rate of settlement 
with time decreases. However, the total settlement of a foundation continues to 
increase during the dwell time of the load (tdw ) and reaches a maximum value 
(Smax ) at the end of the dwell time. During the decay period of the load (tde ), the 
foundation rebounds to some degree. 

The results of the model foundation tests on sand obtained by Cunny and 
Sloan are given in Table 6.2. Also, the results of model tests for square surface 
foundations on clay as reported by Cunny and Sloan are shown in Table 6.3. 
Based on these results, a few general observations may be made: 

1. The settlement of foundations under transient loading is generally uniform.
This can be seen by observing the settlement at three corners of the model
foundations-both in sand and clay.

2. Foundations under dynamic loading may fail by punching type of failure in
soil, although general shear failure may be observed for the same footings
tested under static conditions.

3. In Table 6.2, the 228 mm foundation failed at a load of 11.52 kN under static
loading conditions. The total settlement after the failure load application
was 66.55 mm. However, under dynamic loading conditions, when 0(1) /Qu

was equal to 1.25 (Test 4), the settlement of the footing was about 10.16 mm.
Similarly, in Table 6.3, the static failure load Qu of the 114.3 mm foundation
was 10.94 kN with a settlement of 50.8 mm. The same foundation under
dynamic loading with Qd(l) /Qu = 1.17 (Test 2) showed a total settlement of
about 17.78 mm.
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6.5 Experimental Observation of Load-Settlement Relationship for Vertical Transient Loading 

Table 6.2 Load-Settlement Relationship of Square Foundations on Sand Due 
to Transient Loadinga

Size of Qd(l) 

Test footing Qu Qd(max) Qd(l) Qu t, fdw fde Smax(mm)
c 

No. (mm) (kNt (kN) (kN) % (ms) (ms) (ms) Pot.1 Pot.2 Pot.3 

1 152 X 152 3.43 3.56 3.56 104 18 122 110 7.11 1.27 2.79 

2 203 X203 8.09 13.97 12.46 154 8 420 255 

3 203 X203 8.09 10.12 9.67 120 90 280 290 21.08 23.62 24.13 

4 228 X 228 11.52 15.57 14.46 125 11 0 350 10.16 10.67 10.16 

a Compiled from Cunny and Sloan (1961): Compacted dry unit weight of sand= 16.26 kN/m3
; relative 

density of compaction of sand = 96%; triaxial angle of friction of sand = 32°. 

b Ultimate failure load tested under static conditions. 

c Settlement of foundations measured at three corners of each foundation by linear potentiometer. 

Source: Based on Cunny, R. W., and Sloan, R. C. (1961). "Dynamic Loading Machine and 
Results of Preliminary Small-Scale Footing Tests," Special Technical Publication No. 305, 

American Society for Testing and Materials, pp. 65-67. 

Table 6.3 Load-Settlement Relationship of Square Foundations on Clay Due 
to Transient Loadinga

Size of Qd(l) 

Test footing Qu Qd(max) Qd(l) Qu t, fdw tde Smax(mm)° 

No. (mm) (kNt (kN) (kN) % (ms) (ms) (ms) Pot.1 Pot.2 Pot.3 

1 114X114 10.94 12.68 10.12 93 9 170 350 12.70 12.70 12.19 

2 114X114 10.94 13.79 12.54 117 9 0 380 16.76 18.29 17.78 

3 114Xl14 10.94 15.39 13.21 121 10 0 365 43.18 42.67 43.18 

4 127 X 127 13.52 15.92 13.12 97 9 0 360 14.73 13.97 13.97 

a Compiled from Cunny and Sloan (1961): Compacted moist unit weight= 14.79-1547 kN/m3
; moisture con-

tent= 22.5 ± 1.7%; c = 115 kPa; <f> = 4°(undrained test). 

b Ultimate failure load tested under static loading conditions. 

c Settlement of foundations measured at three corners of each foundation by linear potentiometer. 

Source: Based on Cunny, R. W., and Sloan, R. C. (1961). "Dynamic Loading Machine and 

Results of Preliminary Small-Scale Footing Tests," Special Technical Publication No. 305, 

American Society for Testing and Materials, pp. 65-67. 

These facts show that, for a limiting settlement condition, a foundation can 
support a higher load under dynamic loading conditions than those observed 
from static tests. 

Dynamic Load versus Settlement Prediction in Clayey Soils 

Jackson and Hadala ( 1964) reported several laboratory model tests on 
114.3-203.2 mm square foundations resting on highly saturated, compacted, 
plastic Buckshot clay. The tests were similar in nature to those described previ
ously in this section . Based on these results, Jackson and Hadala have shown that 
there is a unique nondimensional relation between Qd(max) / B2cu and Smax/ B (cu
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Figure 6.5 N ondimensional relationship of 0cmax) / B2cu and S(max) I B for model 
foundation tests in Buckshot clay (compiled from Jackson and Hadala, 1964) 
Source: Based on Jackson, J. G., Jr., and Hadala, P. F. (1964). "Dynamic Bearing Capacity of 
Soils. Report 3: The application of Similitude of Small-Scale Footings Tests," U.S. Army Corps of 
Engineers, Waterways Experiment Station, Vicksburg, Mississippi .  

is undrained shear strength). This is shown in Figure 6.5. Note that the tests on 
which Figure 6. 5 are based have tdw = 0. However, for dynamic loads with tdw > 0, 
the results would not be too different. 

The preceding finding is of great practical importance in estimation of the 
dynamic load-settlement relationships of foundations. Jackson and Hadala have 
recommended the following procedure for that purpose. 

1. Determine the static load Q versus settlement S relationship for a foundation
from plate bearing tests in the field.

2. Determine the unconfined compression strength of the soil quc in the laboratory.

quc = 2cu

3. Plot a graph of Q/ B2cu versus Sstat / B. (See Figure 6.6, curve a.)

Qd(max)

B2cu

4. For any given value of Sstat/ B, multiply Q/ B2cu by the strain rate factor
( � 1. 5) and plot it in the same graph. The resulting graph of Sstat / B versus
1.5Q/ B2cu will be the predicted relationship between 0(max) / B2cu and Smax/ B.
(See Figure 6.6, curve b.)
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Figure 6.6 Prediction of dynamic load-settlement relationship for foundations 
on clay 

EXAMPLE 6.2 

The estimated static plate load-bearing test results of a foundation resting on 
stiff clay and 1 .5 m in diameter are given below. 

Q(kN) Settlement (mm) Q(kN) Settlement (mm) 

0 0 27.0 41.9 

4.5 6.4 36.0 73.7 

9.0 12.2 40.5 94.0 

18.0 27.9 45.0 172.7 

The unconfined compression strength of this clay was 160 kPa. 

a. Plot a graph of estimated Smax/B versus Qd(max) /B2cu assuming a strain-rate
factor of 1 .5.

b. Determine the magnitude of the maximum dynamic load 0(max) that pro-
duces a maximum settlement Smax of 0.15 m.

SOLUTION: 

Given B = 1.5 m = 1500 mm. and cu
= _!_ (160) = 80 kPa, the following table 

can be prepared. 2 
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s (%) 
Q 1.5Q 

Q(kN) Sstat (mm) B2cu B2cu 
B 

(1) (2) (3) (4) (5) 
0 0 0 0 0 

4.5 6.4 0.4267 0.025 0.037 

9.0 12.2 0.8133 0.050 0.075 

18.0 27.9 1.8600 0.100 0.150 

27.0 41.9 2.7930 0.150 0.225 

36.0 73.7 4.9130 0.200 0.300 

40.5 94.0 6.2670 0.225 0.337 

45.0 172.7 11.5130 0.250 0.375 

Assuming SIB (Col.3) to be equal to Smax l B and 1.5 QI B2cu to be equal to 
Qd(max) I B2c

u , a graph can be plotted (Figure 6. 7). 

For S = 0.15 m Smax
= 

O.l5 
X 100 = 10% max 

, B 1.5 
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6.6 Seismic Bearing Capacity 

From Figure 6.7, the value of 0cmax)/ B2cu corresponding to Smax l B = IO% is 
about 0.348. Hence 

0cmax) = (0.348)(1.52 )(80) = 62.64 kN

ID SEISMIC BEARING CAPACITY

6.6.1 Solution of Richards et al. (1993) 

In some instances, as stated before, shallow foundations may fail during seismic 
events. Published studies relating to the bearing capacity of shallow foundations 
in such instances are rare. In 1993, Richards et al. developed a seismic bearing 
capacity theory that shall be detailed in this section. 

Figure 6.8 shows a failure surface in soil assumed for the subsequent analy
sis, under static conditions. Similarly, Figure 6. 9 shows the assumed failure under 
earthquake conditions. Note that, in the two figures, 

aA , aAE = inclination angles for active pressure conditions 

and 

ap , aPE = inclination angles for passive pressure conditions 

According to this theory, the ultimate bearing capacities for continuous founda

tions in granular soil are 

and 

(Static conditions) 

1 
quE = cNcE + qNqE + -r BNyE (Earthquake conditions) 

2 

(6.29) 

(6.30) 
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Figure 6.8 Assumed failure surface in soil for static bearing capacity analysis 
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Figure 6.9 Assumed failure surf ace in soil for seismic bearing capacity analysis 

where 

Note that 

and 

where 

Ne , Nq
, N

y
, NeE , N

qE , N
yE = bearing capacity factors 

Ne , Nq 
and N

y
= f(</J') 

NeE, N
qE and N

yE = f(</J', tan0) 

kh tan0=--
I-kv

(6.31) 

kh = horizontal coefficient of acceleration due to an earthquake 
kv = vertical coefficient of acceleration due to an earthquake 

The variation of Ne, N
q
, and N

y 
can be determined by considering AC as 

a vertical soil retaining wall with a horizontal backfill (Figure 6.8) and Cou
lomb's earth pressure. The wall AC is subjected to an active thrust from Zone I 
(i .e., AEC) and a passive thrust from Zone II (i.e., ACF). 

If c = 0, r = 0, q =I: 0, then from Eq. (6.29), 

where 

KP = Coulomb's passive earth pressure coefficient 

KA = Coulomb's active earth pressure coefficient 

(6.32) 

(6.33) 
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6.6 Seismic Bearing Capacity 

Similarly, if q = 0, c = 0, and y ¥= 0, then from Eq. (6.29), 
1 q =-yBN 

where 
u 2 y 

The relationships for KA, KP, aA, and ap can be given as follow: 

cos2 ¢ KA=-----------

{ 

sin(¢ + 8) sin¢ }
2 

cos8 1 + 
cos8 

cos2 ¢ Kp
= -----------

{ 

sin(¢ - 8) sin¢ }
2 

cos8 1-
cosc5 

,,,. 
_

1 

{
[tan¢(tan¢ + cot<jJ)(l + tan8 cot¢]112 -tan¢

}aA = 't' + tan 
1 + tan8(tan¢ +cot¢) 

,,,. 
_

1 

{
[tan¢(tan¢ + cot¢ )(1 + tan8 cot</)]112 + tan¢

}a P = - 't' + tan 
1 + tan8(tan¢ +cot¢) 

where 8 = soil-wall friction angle 
It has been recommended to use 8 = ¢/2 in calculation of N

q 
and N

y
. 

If q = 0 and y = 0, then From Eq. (6.29), 

where Ne
= (N

q 
- l) cot<j) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

The variations of N
q
, N

y
, and Ne as determined from Eqs. (6.33), (6.35), and 

(6.41) are given in Table 6.4 and Figure 6.10. 

Table 6.4 Bearing capacity factors - Ne, Nq
, and N

y

q, (deg) Ne N
'l

N
r.

0 6.0 1.0 0 

10 7.77 2.37 1.38 

20 13.46 5.90 6.06 

30 26.86 16.51 23.76 

40 69.16 59.03 111.9 
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6.6 Seismic Bearing Capacity 

The variation of NeE , N
qE, and N

yE can be evaluated in a similar manner 
described above to evaluate of Ne , Nq

, and N
y
. For this we can consider A'C' 

(Figure 6.9) as a vertical soil retaining wall with a horizontal backfill and extend 
the Coulomb failure mechanism to the dynamic earthquake situation. With that, 
we obtain 

where 

(
KPE 

J N
y 

= tanaAE ---1 
KAE

cos2 (</J -0) 
�E

= 

--------2 

0 (� 0){l sin(</J + 8)sin(</J-0)} cos cos u + + � cos(u + 0) 

cos2 (</J- 0) 
KPE = .---------- 2

cos 0 cos( 8 + 0) {1 - sin( </J + D) sin( </J -0) } 
cos(8 +0) 

_1 {
�(1 +tan2 a)[l +tan(8 +0)cota] -tana

}aAE = a +tan 
1 + tan(8+ 0)(tana + cot a) 

_ _1 { �(l + tan2 a)[l + tan(8 -0)cota] + tan a
}aPE - -a +tan 

1 + tan(8 + 0)(tana + cot a) 

a = <p-0 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

The bearing capacity factor NeE can be obtained from a similar relationship as 
in Eq. (6.41), or 

NeE = (N
qE -l)cot<p (6.49) 

Figure 6.11 gives the variation of NeE I Ne , N
qE I N

q
, and N

yE I N
y 

with 
tan 0 = kh /(l- kv ). It should be noted that NeE , N

qE , and N
yE have been calcu

lated with 8 = (/J/2.
Under static conditions, bearing capacity failure can lead to a substantial sud

den downward movement of the foundation. However, bearing capacity-related 
settlement in an earthquake is important, and it takes place when the ratio 
tan0 = kh /(l -kv) reaches the critical value (kh fl - kv )*. If kv = 0, then (kh /1 -kv )* 
becomes equal to k;. 
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Figure 6.11 Variation of NcE /Ne , N
q
E / N

q
, N

r
E / N

r 
with tan0 

Figure 6.12 shows the variation of kZ (for kv = 0) with the factor of safety 
(FS) applied to the ultimate static bearing capacity [Eq. 6.29], with ql , and D1 / B 

(for ¢l 
= 30° and 40°). 

The settlement of a strip foundation due to an earthquake using a sliding 
block approach can be estimated (Richards, Elms and Budhu, 1993) as 

0.4 -------------------
DJ-

-1
B-¢1 = 30° 

¢1 = 40° 1 
0.5 

"' 0.5 
0.3 l--------+-------+-:--�'1L--��:c..----"9 8j� 

0 

0 

0 ________ ........_ _____ ___,_ _____ __, 

2 3 4 

Static safety factor, FS

Figure 6.12 Critical acceleration kZ for kv = 0 for granular soil ( c = 0) 
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6.6 Seismic Bearing Capacity 

v2 

[kZ ]-
4

SEq
(m)=0.174- - tanaAE 

Ag A 
(6.50) 

where V = peak velocity for the design earthquake (m/sec) 
A = acceleration coefficient for the design earthquake 
g = acceleration due to gravity (9 .81 m/sec2) 

The values of kZ and aAE can be obtained from Figure 6.12 and Table 6.5, respec
tively. This approach can be used to design a foundation based on limiting seis
mic settlements. 

Table 6.5 Variation of aAE with kZ and soil friction angle cp' (Compiled from
Richards, Elms, and Budhu, 1993) 

tanaAE 

kZ <f,'=20°

"" =25° <f,'=30°

q,' = 35°

q,' = 40°

0.05 1.10 1.24 1.39 1.57 1.75 

0.10 0.97 1.13 1.26 1.44 1.63 

0.15 0.82 1.00 1.15 1.32 1.48 

0.20 0.71 0.87 1.02 1.18 1.35 

0.25 0.56 0.74 0.92 1.06 1.23 

0.30 0.61 0.77 0.94 1.10 

0.35 0.47 0.66 0.84 0.98 

0.40 0.32 0.55 0.73 0.88 

0.45 0.42 0.63 0.79 

0.50 0.27 0.50 0.68 

0.55 0.44 0.60 

0.60 0.32 0.50 

Source: Based on Richards, R., Jr., Elms, D. G., and Budhu, M. (1993). "Seismic Bearing 

Capacity of and Settlements of Foundations," Journal of Geotechnical Engineering Division, 
ASCE, Vol. 119, No. 4, pp. 662-674. 

EXAMPLE 6.3 

A strip foundation is to be constructed on a sandy soil with B = 1.2 m, 

Dr
= 0.9 m, r = 17.6 kN/m3 , and (/J = 30°.

a. Determine the gross ultimate bearing capacity quE· Assume that kv = 0 and
kh

= 0.176.
b. If the design earthquake parameters are V = 0.4 mis and A= 0.32 , deter

mine the seismic settlement of the foundation. Use FS = 3 to obtain the
static allowable bearing capacity.

SOLUTION: 

a. From Figure 6.10, for (/J = 30°, Nq = 16.51, and N
r 
= 23.76 Also,

tan0 = 
kh 

= 
O.l 76

= 0.176 
l-k

v 
1-0
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For tan0 = 0.176, Figure 6.11 

NyE
= 0.4 

Nr 

Thus, 

and NqE
= 0.63 

Nq 

NyE = (0.4)(23.76) = 9.5 

NqE = (0.63)(16.51) = 10.4 

and 

1 
quE =qNqE +-yBNyE2 

= (17.6 X 0.9)(10.4) + G}17.6)(1 .2)(9.5) 

= 265.06 kPa 

b. For the foundation,

D1 
= 

0.9 
= 0.75 

B 1 .2 

From Figure 6.12, for(/)= 30°, FS = 3 ,  and D.r / B = 0.75, the value of kZ = 0.26. 
Also, from Table 6.5, for kZ = 0.26, the value of tanaAE = 0.92. 

From Eq. (6.50), we have 

v2 [kZ ]-4 

SEq
(m) = 0.174- - tanaAE

Ag A 

with V = 0.4 m/s, 

it follows that 

s = 0.174[ 0·26 ]-4 

(0.92) (0.4)2 

Eq 0.32 (0.32)(9.8 1) 
= 0.0187 m = 18.7 mm 

6.6.2 Solution of Budhu and al-Karni (1993) 

Budhu and al-Kami (1993) used the failure surface in soil as shown in Figure 6.13 
to determine the ultimate bearing capacity of a shallow foundation quE · Note that, 

----- -

in this figure, AB and EF are arcs of logarithmic spirals. According to this solution, 

(6.51) 
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6.6 Seismic Bearing Capacity 

Figure 6.13. Failure surface under a strip foundation as assumed by Budhu 
and al-Karni (1993) 
Source: Based on Budhu, M., and al-Kami, A. A. (1993). "Seismic Bearing Capacity of Soils," 

Geotechnique, Vol. 43, No. 1, pp. 181-187. 

where c = cohesion 
Ne , N

q
, N

y
= static bearing capacity factors (see Table 6.1) 

Sc , S
q
, S

y
= static shape factors [see Eqs. (6.6) - (6.8)] 

de , d
q
, d

y 
= static depth factors [see Eqs. (6.9) - (6.13)] 

ec , e
q
, e

y 
= seismic factors 

The relationships for the seismic factors can be given as follows: 

[ (5 3kl .2 J]e
q 

= (l - kv )exp -
1·- �v 

(6.52) 

(6.53) 

(6.54) 

where kh and kv = horizontal and vertical acceleration coefficients respectively 

C 
D=-

yH 
(6.55) 

(6.56) 
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EXAMPLE 6.4 

Consider a foundation measuring 1 m X 1.5 m supported by a soil with 
y = 18 kN/m 3 , c = 36 kN /m 2 , </) = 27°. Given Dr = 1 m. Assume kv = 0.25 and 
kh = 0 and estimate the ultimate bearing capacity quE· Use Eq. (6.51). 

SOLUTION: 

Eq. (6.51): 

c = 36 kN/m2; </) = 27° (Table 6.1) 

Ne
= 23.94; N

q 
= 13.2; N

r 
= 14.47. 

From Eqs. (6.6)- (6.8), 

Sc =l+(B)(NqJ=1+(-l )( 
13.2 

)=1.368 
L Ne 1.5 23.94 

s. = 1+ ( 1 }an</) = 1+ C \ }an 27 = 1.34

s, = 1-0A1) = 1-oA/s) = o.733 

From Eqs. (6.9), (6.11), and (6.13), 

d, = 1+ 0.4( 1) =I+ 0.4(D = 1.4

d
q 
= 1+ 2 tan 1/)(1 -sin</) )2 ( 1) = I + 2 tan27(1-sin27)2 G) = 1.304

d =1 
r 

From Eqs. (6.52)-(6.56), 

0.5B (n ) H =
cos(:+ �f

xp 
2

tan</) + DJ

= 
(0.5)(1) exp(n Xtan 27)+1=3.13m

cos( 45 + 13.5) 2 
C 36 

D = - = --- = 0.639
y H (18)(3.13) 

ec = exp(-4.3ki +D ) = exp[ (-4.3)(0.25)1+ 0·639] = 0.642 
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6.6 Seismic Bearing Capacity 

eq = (I -k,)exp[-( �-�k
r J] = (1-0)exp[-( 5·3; �-:512 J] = 0.366 

( 2 ) [ ( 9k L2 J] [ ( 9 XO 251 .2 J] ey = 1 + 

3
kv exp -

l -
h

kv 

= (1 + 0)exp -
l � 0

= 0.182 

Hence , 

quE = (36)(23.94)(1.368)(1.4)(0.642) + (18 X 1)(13.2)(1.34)(1.304)(0.366)

+ ( �) (18)(1)(14.47)(0. 733)(1)(0.182)

=1229 kPa 

6.6.3 Solution by Choudhury and Subba Rao (2005) 

Choudhury and Subba Rao (2005) assumed a similar failure surface in soil as 
shown in Figure 6.13 and limit equilibrium method by pseudo-static approach 
and expressed the ultimate bearing capacity quE for a strip foundation as 

1 
quE = cNcE + qNqE + -r BNyE2 

(6.57) 

The variation of NcE , NqE , and NyE with kh and (/J with kv = 0 is shown in 
Figure 6.14. The depth and shape factors can be incorporated into Eq . (6.57) to 
estimate quE for rectangular foundations, or 

where Sc , Sq , Sy = static shape factors [see Eqs. (6.6) - (6.8)] 
de , dq , dy = static depth factors [see Eqs. (6.9) - (6.13)] 

EXAMPLE 6.5 

Solve Example 6.4 using Eq. (6.58). 

SOLUTION: 

(6.58) 

Given (/J = 27° and kh = 0.25. Thus, from Figure 6.14, NcE = 8, NqE = 5 , 
and NyE = 3. From Example 6.4, Sc = 1.368, Sq = 1.34, Sy = 0. 733, de = 1.4, 
dq = 1.304, and dy = 1. 
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6.7 Seismic Bearing Capacity of a Foundation at the Edge of a Granular Soil Slope 

Hence, 
1 quE = cNcEScdc + qNqESqdq + -r BNySydy2 

= (36)(8)(1.368)(1.4)+ (18 X 1)(5)(1.34)(1.304) 

+ _!_(18)(1)(3)(0.733)(1)
2 

= 728.62 kPa 

Note: The ultimate bearing capacity of 728.62 is approximately 60% of what 
was estimated in Example 6.4. The difference is due to the contribution of cohe
sion. If c would have been zero, quE in Examples 6.4 and 6.5 would have been 
about 169 kN/m2 and 177 kN/m2, respectively. The results of field tests are not 
yet available to verify the results. 

Ill SEISMIC BEARING CAPACITY OF A FOUNDATION AT

THE EDGE OF A GRANULAR SOIL SLOPE 

Figure 6.15 shows a strip surface foundation (Bl L = 0, D1 ! B = 0) at the edge of 
a granular slope. The foundation is subjected to a loading inclined at an angle a
to the vertical. Let the foundation be subjected to seismic loading with a hori
zontal coefficient of acceleration, kh. Based on their analysis of method of slices, 
Huang and Kang (2008) expressed the ultimate inclined load per unit area as 

where 

1 
quE = --BNyFyiFy13Fye (kv = 0) 

2cosa 

Ny = bearing capacity factor (Table 6.1) 
Fyi = load inclination factor 
Fy13 = slope inclination factor 

(6.59) 

Fye = correction factor for the inertia force induced by seismic loading 
The relationships for Fyi, Fy/3, and Fye are as follow: 

-
[ -( 

a
o 

J](O.lq,- 1 .21)

R-- 1 -
yz ¢0 

Fy/3 = [1- (1.062 - 0.014¢ )tan ¢]({�:) 

and 

Pre = l - [(2.57 - 0.043</) )e 1 .45tan/3 ]kh

In Eqs. (6.60) through (6.62), ¢ is in degrees. 

(6.60) 

(6.61) 

(6.62) 
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_·:·.:·:·::-: ._.._::-
.. - _:::: .· ·. 

Sand 

c=O 

Figure 6.15 Strip foundation at the edge of a granular slope subjected to 
seismic loading 

EXAMPLE 6.6 

Consider a strip surface foundation on a granular soil slope subjected to a 
seismic loading, as shown in Figure 6.15. Given: B = 1.5 m ,  y = 17.5 kN/m3 ,

cp = 35°, c = 0, f3 = 30° , a = 10° , and kh = 0.2. Calculate the ultimate inclined 
load per unit area, q uE • 

SOLUTION 

From Eq. (6.59), 

1 
quE = ---BNyFyiFy13 Fye2 cosa 

For cp = 35°, Ny
= 48.03 (Table 6.1). Thus, 

So 

-
[ (

a
o J]

(O.l<fl-l.2l) -
[ 

(lO)]((o.1x35)-1.211 _ 
R - 1 - - - 1 - - - 0.463� ¢0 35 

Fy/3 = [1- (1.062 - 0.014¢)tan ¢ifo:) 

= [1- (1.062 - 0.014 X 35)tan 35i�) = 0.215 

Fye
= 1-[(2.57 - 0.043¢)e 1 .45 tanf3]kh

= 1-[(2.57 - 0.043 X 35)e 1 .45tan30](0.2) = 0.508 

1 
quE = --(17.5)(1.5)( 48.03)(0.463)(0.215)(0.508)= 32.37 kPa2 cos 10 
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Problems 

PROBLEMS 

6.1 A 0.9 m square shallow foundation is supported by a dense sand. The rel
ative density of compaction, unit weight, and angle of friction (static) of 
this sand are 75%, 19.2 kN/m3, and 38°, respectively. Given the depth 
of the foundation to be 0.9 m, estimate the minimum ultimate bearing 
capacity of this foundation that might be obtained if the vertical loading 
velocity on this foundation were varied from static to impact range. 

6.2 Redo Problem 6.1 with the depth of the foundation as 1.40 m. 

6.3 Redo Problem 6.1 with the following: 

Foundation width= 1.6 m 

Foundation depth= 0.75 m 

Angle of friction of sand = 35°

Unit weight of compacted soil= 17.4 kN/m3

Relative density of the compaction of sand = 80% 

6.4 A rectangular foundation has a length L of 2. 5 m. It is supported by a 
medium dense sand with a unit weight of 17 kN/m3

• The sand has an 
angle of friction of 36°. The foundation may be subjected to a dynamic 

load of 73 5 kN increasing at a moderate rate. Using a factor of safety 
equal to 2, determine the width of the foundation. Use D1 = 0.8 m. 

6.5 A foundation 2.25 m square is supported by saturated clay. The unit 
weight of this clay is 18.6 kN/m3

• The depth of the foundation is 1.2 m. 
Determine the ultimate bearing capacity of this foundation assuming 
that the load will be applied very rapidly. Given the following for the 
clay [laboratory unconsolidated-undrained triaxial (static) test results]: 

Undrained cohesion, Cu = 90 kPa 

Strain-rate factor = 1.4 

6.6 Redo Problem 6.5 with the following changes: 

Foundation width = 1.5 m 

Foundation length = 2.6 m 

Foundation depth = 1.75 m 

6.7 A clay deposit has an undrained cohesion (static test) of 90 kPa. A 
static field plate load test was conducted with a plate having a diameter 
of 0.5 m. When the load per unit area q was 200 kPa, the settlement was 
20 mm. 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



6 I Dynamic Bearing Capacity of Shallow Foundations 

a. Assume that, for a given value of q, settlement is proportional to
the width of the foundation. Estimate the settlement of a prototype
circular foundation in the same clay with a diameter of 3 m (static
loading).

b. The strain-rate factor of the clay is 1.4. If a vertical transient load
pulse were applied to the foundation as given in part (a), what would
be the maximum transient load (in kN) that will produce the same
maximum settlement (Smax ) as calculated in part (a)?

6.8 Consider a shallow strip foundation with B = 1.2 m, D_r = 1 m. 
The foundation is supported by a soil with c = 25 kPa, cf> = 20°, and 
r = 17 .2 kN /m2

• Estimate the ultimate seismic bearing capacity if
kh = 0.2 and kv = 0. Use Eq. (6.30) and the theory of Richards et al. 
(1993). 

6.9 Repeat Problem 6.8 using Eq. (6.51). 

6.10 Repeat Problem 6.8 using Eq. (6.58). 

6.11 For a granular soil deposit, assume r to be 16.5 kN/m3
, c = 0, and 

cf>= 37°. Estimate the seismic ultimate bearing capacity (quE) for a con
tinuous foundation with the following: B = 1.5 m, D_r = 1.0 m, kh = 0.2, 
and kv = 0. Use Eq. (6.30) and the analysis of Richards et al. (1993). 

6.12 Refer to Problem 6.11. If the design earthquake parameters are 
V = 0.35 m/s and A= 0.3, determine the seismic settlement of the foun
dation. Assume FS = 4 for obtaining static allowable bearing capacity. 
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Earthquake and Ground 

Vibration 

Ill INTRODUCTION

The study of earthquakes is important for scientific, social, and economic rea
sons. Earthquakes attest to the fact that dynamic forces are operating within the 
earth. Stress builds up through time, storing strain energy, and earthquakes rep
resent the release of this stored strain energy. 

The ground vibrations due to earthquakes have resulted in several major 
structural damages in the past. In the North American continent, earthquakes 
are believed to originate from the rupture of faults. The ground vibration result
ing from an earthquake is due to the upward transmission of the stress waves 
from rock to the softer soil layers(s). In recent times, several major studies have 
been performed to study the nature of occurrence of earthquakes and the asso
ciated amount of energy released. Also, modern techniques have been developed 
to analyze and estimate the physical properties of soils under earthquake condi
tions and to predict the ground motion. These developments are the subjects of 
discussion in this chapter. 

Ill DEFINITION OF SOME EARTHQUAKE-RELATED

TERMS 

Focus ( or hypocenter): The focus of an earthquake is a point below the 
ground surface where the rupture of a fault first occurs (point Fin Figure 7.la). 

Focal Depth: The vertical distance from the ground surface to the focus (EF 
in Figure 7.la). The maximum focal depth of all earthquakes recorded so far 
does not exceed 700 km, because they are confined to the rigid lithosphere, which 
can undergo brittle fracture. 
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7.2 Definition of Some Earthquake-Related Terms 

E Ground surface Site A
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Figure 7.1 Definition of focus and epicenter: (a) section; (b) plan 

Focal depths are normally related the type of plate boundary from which 
earthquakes originate. Based on focal depth, earthquakes may be divided into 
the following three categories: 

1. Deep-focus earthquakes: These have focal depths of 300-700 km. They
constitute about 3% of all earthquakes recorded around the world and are
mostly located in the Circum-Pacific belt.

2. Intermediate-focus earthquakes: These have focal depths of 70--300 km.
3. Shallow-focus earthquakes: The focal depth for these is less than 70 km.

About 75% of all the earthquakes around the world belong to this category.
The California earthquakes have focal depths of about 10-15 km.

Epicenter: The point vertically above the focus located on the ground surface
(point E in Figure 7.1). 

Epicentric Distance: The horizontal distance between the epicenter and the 
given site (line EA in Figure 7 .1 ). 

Hypocentric Distance: The distance between a given site and the focus (line 
FA in Figure 7.la). 

Effective Distance to Causative Fault: The distance from a fault to a given site 
for calculation of ground motion (Figure 7 .2). 
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7 I Earthquake and Ground Vibration 

This distance is commonly presumed to be the epicentric distance. This type of 
assumption, under circumstances, may lead to gross errors. It can be explained 
with reference to Figure 7 .2, which shows the plans of two cases of fault rupture. 
In Figure 7.2a, the length of the fault rupture Lis small as compared to the epi
centric distance EA. In this case, the effective distance could be taken to be equal 
to the epicentric distance. However, a better estimate of the effective distance is 
BA (Bis the midpoint of the ruptured fault). Figure 7.2b shows the case where 
the length of the fault rupture is large. In such circumstances, the length AC is 
the effective distance, which is the perpendicular distance from the site to the line 
of fault rupture in the plan. 

Intensity: An arbitrary scale developed to measure the destructiveness of an 

earthquake at the surface. It is qualitative and is based on the damage caused 
by the earthquake. The same earthquake may have different intensities at two 

different locations depending on soil conditions, ground water location, and type 
of construction at that particular location. It is worth noting that there are sev

eral intensity scales available in the literature, and the Modified Mercalli Scale 
(reported in Roman numerals) is presently in use in the United States for that 
purpose, divided into 12 degrees of intensity. An abridged version of the Modi
fied Mercalli Scale is given in Table 7 .1. 

E 

t 
L 

l 

Site A 

E 

L Site A 

C 

(b) 

Figure 7.2 Effective distance from a site to the causative faults (Note: Lis the 
length of the fault rupture.) 
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7.3 Earthquake Magnitude 

Table 7.1 Abridged Modified Mercalli Intensity Scalea

Intensity 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

X 

XI 

XII 

Description 

Detected only by sensitive instruments 

Felt by a few persons at rest , especially on upper floors; delicate suspended 
objects may swing 

Felt noticeably indoors, but not always recognized as a quake; standing 
autos rock slightly, vibration like passing trucks 

Felt indoors by many, outdoors by a few; at night some awaken; dishes, win
dows, doors disturbed; motor cars rock noticeably 

Felt by most people; some breakage of dishes, windows, and plaster; distur
bance of tall objects 

Felt by all; many are frightened and run outdoors; falling plaster and chim

neys; damage small 

Everybody runs outdoors; damage to building varies, depending on quality 

of construction; noticed by drivers of autos 

Panel walls thrown out of frames; fall of walls, monuments, chimneys; sand 

and mud ejected; drivers of autos disturbed 

Buildings shifted off foundations, cracked, thrown out of plumb; ground 

cracked; underground pipes broken 

Most masonry and frame structures destroyed; ground cracked; rails bent; 
landslides 

New structures remain standing; bridges destroyed; fissures in ground; pipes 
broken; landslides; rails bent 

Damage total; waves seen on ground surface; lines of sight and level 
distorted; objects thrown up into air. 

a After Wiegel, R. W. (1970). 

Source: Based on Wiegel, Earthquake Engineering, 1st , 1970, Pearson Education, Inc., Upper 

Saddle River, New Jersey. 

El EARTHQUAKE MAGNITUDE

Magnitude is a measure of the size of an earthquake, based on the amplitude of 
elastic waves it generates, at known distances from the epicenter, using seismo
graphs. The magnitude scale presently in use was first developed by C. F. Richter. 
The historical developments of the magnitude scale have been summarized by 
Richter himself (1958). 

Richter's earthquake magnitude is defined by the equation 

log10 E = 11.4 + 1.5M (7.1) 

where Eis the energy released (in ergs) and Mis magnitude. Bath (1966) slightly 
modified the constant given in Eq. (7 .1) and presented it in the form 

log10 E = 12.24 + 1.44M (7.2) 
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7 I Earthquake and Ground Vibration 

Table 7.2 Comparison of Richter Scale Magnitude with the 
Modified Mercalli Scale 

Richter scale 
Magnitude, M

1 

2 

3 

4 

5 

6 

7 

8 

Maximum intensity, Modified 
Mercalli Scale 

I, II 

III 

IV 

VI, VII 

VIII 

IX,X 

XI 

From Eq. (7 .2), it can be seen that the increase of M by one unit will generally 
correspond to about a 30-fold increase of the energy released ( E) due to the earth
quake. A comparison of the magnitude M of an earthquake with the maximum 

intensity of the Modified Mercalli Scale is given in Table 7.2. Table 7.3 gives a list 
of some of the past major earthquakes around the world with their magnitudes. 

As mentioned previously, the main cause of earthquakes is the rupture of 
faults. In general the greater the length of the fault rupture, the greater the magni
tude of an earthquake. Several relations for the magnitude of the earthquake and 
the length of fault rupture have been presented by various investigators (Tocher, 
1958 ; Bonilla, 1967; Housner, 1969). Tocher (1958), based on observations of 
some earthquakes in the area of California and Nevada, suggested the relationship 

logL = 1.02 M - 5.77 

where Lis the length of fault rupture (kilometers). 

Table 7.3 Some Past Major Earthquakes 

Name Epicenter Location 

Alaska 61.1 ° N, 147.5° W 

Chile (South America) 38° s, 73.5 w

Colombia (South America) 1° N, 82°W 

Peru (South America) 9.2° S, 78.8° W 

San Francisco, California 38° N, 123° W 

Kern County, California 35° N, 119° W 

Dixie Valley, Nevada 39.8°N, 118.1 ° W 

Hebgen Lake, Montana 44.8° N, 111.1 °W 

Date 

March 27, 1964 

May 22, 1960 

January 31, 1906 

May 31, 1970 

April 18, 1906 

July 21, 1952 

December 16, 1954 

August 17, 1959 

(7.3) 

Magnitude 

8.4 

8.4 

8.6 

7.8 

8.3 

7.7 

6.8 

7.1 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



7.3 Earthquake Magnitude 

Based on Eq. (7 .3), it can be seen that for an earthquake of magnitude 6, 
the length of fault rupture is about 2.3 km. However, when the magnitude is 
increased to 8, the length of fa ult rupture associated is about 250 km. 

The Richter scale is based on the P-wave amplitude (in mm) measured 
by a Wood-Anderson seismograph at a distance of 100 km from the epi
center of the earthquake. The magnitude M = 0 is defined as the maximum 
amplitude of 0.001 mm (at a distance of 100 km). It accurately reflects the 
amount of seismic energy released by an earthquake up to about M = 6.5 .  
For M > 6.5, the scale seems to "saturate" for a variety of reasons (Kanam
ori, 1983). In the literature, the Richter scale magnitude is also referred to as 
local magnitude (ML). 

In order to solve the so-called saturation problem for M > 6.5, a surface-wave 
magnitude scale (Ms ) was developed (Gutenberg, 1945) to measure the peak 
wave amplitude of surface waves (Rayleigh and Love waves) that have periods 
of 20 s at distant location. The surface wave magnitude (Ms ) works well for 
Ms :::::: 8. 

The most recent scale for measuring earthquakes is the moment magni

tude scale, Mw (Kanamori, 1977; Hanks and Kanamori, 1979), which can be 
defined as 

2 
Mw = -log10 Mo -10.7 

3 

where M0 = seismic moment of an earthquake (dyne· cm) 

The seismic moment is expressed as, 

where 

M0
= µAD 

D = average displacement over the entire fault surface 
A = area of rupture 
µ = average shear rigidity of the faulted rock 

(7.4) 

(7.5) 

The average value ofµ is generally assumed to be about 3.0 -3.5 X 1011 dyne/cm2
• 

Table 7.4 provides a comparison between ML and Mw for some past earth
quakes in the United States. In Section 10.18, Mw has been used to evaluate soil 
liquefaction potential. 

The Chi-Chi earthquake which occurred on September 21, 1999, in Nantou 
County, Taiwan, had a surface wave magnitude (Ms ) of 7.3 and the moment 
magnitude (Mw) of 7.6 to 7.7. Figures 7.3, 7.4, and 7.5 show some damage due 
to the earthquake. 
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7 I Earthquake and Ground Vibration 

Table 7.4 Comparison between ML and Mw for Some Past Earthquakes in the 

United States 

Earthquake 

a Southern California 

• Long Beach Earthquake (March 11, 1933)

• Imperial Valley Earthquake (May 19, 1940)

• Santa Barbara Coastal Area Earthquake (July 1, 1941)

• Fish Creek Mountains Earthquake (October 21, 1942)

• Kern County Earthquake (March 15, 1946)

• Manix Earthquake (April 10, 1947)

• Desert Hot Spring Earthquake (December 4, 1948)

• b New Madrid, Missouri (1812)

• b San Francisco, California (1906)

• hPrince William, Alaska (1964)

• hNorthridge, California (1994)

a Hanks and Kanamori ( 1979) 

b Arkansas Earthquake Center (1998) 

ML Mw 

6.3 6.2 

6.4 7.0 

5.9 6.0 

6.5 6.6 

6.3 6.0 

6.2 6.5 

6.5 6.0 

8.7 8.1 

8.3 7.7 

8.4 9.2 

6.4 6.0 

Source: Based on data from Akansas Earthquake Center (1998). "The Moment Magnitude 

Scale," http://quake.ealr.edu/public/moment.htm. AND Hanks, T. C., and Kanamori, H. (1979). 
"A Moment Magnitude Scale," Journal of Geophysical Research, Vol. 85, No. B5, pp. 2348-2358. 

Figure 7.3 House tilted due to liquefaction from Chi-Chi earthquake, Taiwan 

(Courtesy of Dr. Chih-Sheng Ku, I-Shou University, Taiwan) 

Source: Courtesy of Dr. Chih-Sheng Ku, I-Shou University, Taiwan 
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7.3 Earthquake Magnitude 

Figure 7.4 Sand boil observed in reclaimed land from Chi-Chi earthquake, 

Taiwan (Courtesy of Dr. Chih-Sheng Ku, 1-Shou University, Taiwan) 

Source: Courtesy of Dr. Chih-Sheng Ku, 1-Shou University, Taiwan 

Figure 7.5 Sand boils in the peanut field from Chi-Chi earthquake, Taiwan 

(Courtesy of Dr. Chih-Sheng Ku, 1-Shou University, Taiwan) Source: Courtesy of 

Source: Courtesy of Dr. Chih-Sheng Ku, 1-Shou University, Taiwan 
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7 I Earthquake and Ground Vibration 

IZI CHARACTERISTICS OF ROCK MOTION DURING AN

EARTHQUAKE 

The ground motion near the surface of a soil deposit is mostly attributed to 

the upward propagation of shear waves from the underlying rock or "rocklike" 

layers. The term rocklike implies that the shear wave velocity in the material is 
similar to that associated with soft rocks. The typical range of shear wave veloc

ities in hard rocks such as granite is about 3050-3660 mis. Shear wave velocities 

associated with soft rocks can be in the low range of 762-915 mis. However, the 

rocklike material may not exhibit the characteristics associated with hard base 
rocks (Seed, Idriss, and Kiefer, 1969). Hence, for arriving at a solution of the 

nature of ground motion at or near the ground surf ace, one needs to know some 

aspects of the earthquake-induced motion in the rock or rocklike materials. The 
most important of these are 

• duration of the earthquake;
• predominant period of acceleration; and
• maximum amplitude of motion.

Each of these factors has been well summarized by Seed, Idriss, and Kief er. 

Duration of an Earthquake 

Duration of an earthquake is related to the magnitude, but not in a perfectly 
strict sense. In general, it can be assumed that the duration of an earthquake 
will be somewhat similar to that of the fault rupture. The rate of propagation of 

fault rupture has been estimated by Housner (1965) to be about 3.2 kmls. Based 
on this, Housner has estimated the following variation of the duration of fault 
rupture with the magnitude of an earthquake. 

Magnitude of earthquake 

(Richter scale) 

5 

6 

7 

Duration of fault 

rupture (s) 

5 

15 

25-30

It may be noted that the approximate duration of fault rupture can be estimated 
from Eq. (7 .3). Once the length of rupture L for a given magnitude of earth

quake is estimated, the duration can be given by L/(velocity of rupture). 

Predominant Period of Rock Acceleration 

Gutenberg and Richter (1956) have given an estimate of the predominant peri
ods of acceleration developed in rock for California earthquakes. Similar results 

for earthquakes of magnitude M > 7 have been reported by Figueroa (1960). 
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7.4 Characteristics of Rock Motion during an Earthquake 
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Figure 7.6 Predominant period for maximum rock acceleration (from Seed, 
Idriss, and Kief er, 1969) 

Source: Seed, H.B., Idriss, I.M., and Kiefer, F.W. (1969). "Characteristics of Rock Motions During 

Earthquakes," Journal of the Soil Management and Foundations Division, ASCE, Vol. 95, No. SM5, 

pp. 1199-1218. With permission from ASCE. 

Using these results, Seed, Idriss, and Kief er (1969) developed a chart for the 
average predominant periods of acceleration for various earthquakes magnitudes. 
This is shown in Figure 7 .6. Note that in this figure the predominant periods are 
plotted against the distance from the causative f ault (Figure 7 .2). 

Maximum Amplitude of Acceleration 

The maximum amplitude of acceleration in rock in the epicentric region for shal
low earthquakes (focal depth about 16 km) can be approximated as (Gutenberg 
and Richter, 1956) 

1oga0 = -2.1 + 0.81M-0.027M2 (7.6) 

where a0 is the maximum amplitude of acceleration . 
At any other point away from the epicenter, the magnitude of the maximum 

amplitude of acceleration decreases. Relations for the attenuation factor of maxi
mum acceleration have been given by Gutenberg and Richter (1956), Banioff 
(1962), Esteva and Rosenblueth (1963), Kanai (1966), and Blume (1965). Based 
on these studies, Seed, Idriss, and Kief er (1969) have given the average values 
of maximum acceleration for various magnitudes of earthquakes and distances 
from the causative f aults. These are given in Figure 7.7. 
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0 ,..__ _ ___._ __ __.__ __ ....__ _______ ..__ _ ___._ __ __.__ __ ....__ _ _..

40 80 120 160 

Distance from causative fault (km) 

Figure 7.7 Variation of maximum acceleration with earthquake magnitude and 
distance from causative fault (from Seed, Idriss, and Kiefer, 1969) 

Source: Seed, H.B., Idriss, I.M., and Kiefer, F.W. (1969). "Characteristics of Rock Motions During 

Earthquakes," Journal of the Soil Management and Foundations Division, ASCE, Vol. 95, No. SM5, 

pp. 1199-1218. With permission from ASCE. 

ID VIBRATION OF HORIZONTAL SOIL LAYERS WITH

LINEARLY ELASTIC PROPERTIES 

As stated before, the vibration of the soil layers due to an earthquake is due 
to the upward propagation of shear waves from the underlying rock or rock
like layer. The response of a horizontal soil layer with linearly elastic properties, 
developed by Idriss and Seed (1968), is presented in this section. 

Homogeneous Soi I Layer 

Figure 7.8 shows a horizontal soil layer of thickness H underlain by a rock or 
rocklike material. Let the underlying rock layer be subjected to a seismic motion 
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7.5 Vibration of Horizontal Soil Layers with Linearly Elastic Properties 
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Figure 7.8 Cross section and boundary conditions of a semi-infinite soil layer 
subjected to a horizontal seismic motion at its base 

u
K

that is a function of time t. Considering a soil column of unit cross-sectional 
area, the equation of motion can be written as 

where u = relative displacement at depth y and time t 
G(y) = shear modulus at depth y 
c(y) = viscous damping coefficient at depth y 

p(y) = density of soil at depth y 

(7.7) 

The shear modulus can be given by the equation (see the discussion in Chapter 4) 

G(y) = AyB (7.8) 

where A and B are constant depending on the nature of the soil. 
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Substituting Eq. (7.8) into Eq. (7.7), we obtain 

a2 u au a [ B au ] a2ug 
p at2 

+ cat - ay A
y 

ay
= 

-pa(l
(7.9) 

For the case of B ¥= 0 (but < 0.5), using the method of separation of variables, 
the solution to Eq. (7.9) can be given in the form 

n=oo 

u(y, t) = I, Yn(y)Xn (t) (7.10)
n = l 

where 

(7.11) 

and 

(7.12) 

J_b is the Bessel function of first kind of order -b, f3n represents the roots of 
J_b(�n ) = 0, n = 1, 2, 3 . . .  , and the circular natural frequency of nth mode of 
vibration is 

Q) 
=

/3npip
n 0H110 

The damping ratio in the nth mode is 

and r is the gamma function, 

1 

D = 

2 C 

PWn 

The terms b and 0 are related as follows: 
B0-0+2 b=0 

and 
B0-20 +2=0 

For detailed derivations, see Idriss and Seed (1967). 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

For obtaining the relative displacement at a depth y, the general procedure 
is as follows: 

1. Determine the system shape Yn(Y) during the nth mode of vibration [Eq. (7.11)].
2. Determine Xn

(t) from Eq. (7.12). This can be done by direct numerical step
by-step procedure (Berg and Housner, 1961; Wilson and Clough, 1962) or
the iterative procedure as proposed by Newmark (1962).
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7.5 Vibration of Horizontal Soil Layers with Linearly Elastic Properties 

3. Determine u(y, t) from Eq. (7.10).
4. The relative velocity [u(y, t)], relative acceleration [u(y, t)], and strain duloy

can be obtained by differentiation of Eq. (7.10).
5. The values of total acceleration, velocity, and displacement can be

obtained as

Total acceleration = u + u
g

Total velocity= u + u
g

Total displacement= u + u
g

The values of u
K 

and u
K 

can be obtained by integration of the acceleration record 
[ U

K
(t)]. 

Special Cases 

Cohesionless Soils: In the case of cohesionless soils, the shear modulus 
[Eq. (7.8)] can be approximated as 

G(y) = Ay112 or G(y) = Ay113

Assuming the latter to be representative (i.e., B = 1/3), Eqs. (7.16) and (7.17) can 
be solved, yielding 

b = 0.4 and 0 = 1.2 

Hence, Eqs. (7.1 1)-(7.13) take the following form: 

and 

OJ = /Jnpip
n 1.2Hst6 

(Note: /31 = 1.7510 , /32 = 4.8785, /33 = 8.0 166, /34 = 1 1.1570 .... ) 

(7.1 8) 

(7.19) 

(7.20) 

Cohesive Soils: In cohesive soils, the shear modulus may be considered to be 
approximately constant with depth; so, in Eq. (7.8), B = 0 and 

G(y) =A (7.2 1) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



7 I Earthquake and Ground Vibration 

With this assumption, Eqs. (7.11)-(7.13) are simplified as 

and 

Yn(y) = cos[� (2n -1)(;)] 

i\ + 2DnmnXn + m�Xn = (-1r [
( 

4 
) 

Ju
g 2n -1 1t

(7.22) 

(7.23) 

(7.24) 

Computer programs for determination of acceleration, velocity, and dis
placement of soil profiles for these two special cases can be found in Idriss and 
Seed (1967, Appendix C). 

An example of a solution for cohesionless (granular) soil is given in Figure 
7.9. Figure 7.10 shows the variation of shear modulus, maximum shear strain, 
and maximum shear stress with depth for the same soil layer shown in Figure 7 .9. 
For this example, 

H=30m 
Total unit weight of soil= r = 19.65 kN/m3

Effective unit weight of soil= r' = 9.43 kN /m3

Shear modulus of soil = 4. 79 X 103 y113kPa 
D = 0.2(for all modes,n = 1, 2, ... 00) 

For a discussion on the damping coefficient of soil under earthquake conditions, 
see Chapter 4. 

Layered Soils 

If a soil profile consists of several layers of varying properties that are linearly 
elastic, a lumped mass type of approach can be taken (Idriss and Seed, 1968). 
These lumped masses (m1 , m2 , . . .  , mN ) are shown in Figure 7.11. Note 

r1h1 m1= -- (7.25) 

where m1 is a lumped mass placed at the top of soil layer 1, y1 is the unit weight 
of soil in layer 1, h1 is the half thickness of soil layer 1, and 

Yi- 1h- 1 + Yih . 

mi
= ----, z = 2, 3, ... , N (7.26) 

These masses are connected by springs which resist lateral deformation. The 
spring constant can be given by 
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Figure 7.9 Surface response of layer with modulus proportional to cube root 
of depth (from Idriss and Seed, 1968) 
Source: Idriss, I .M. and Seed, H.B. (1968). "Seismic Response of Horizontal Soil Layers," 
Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031. 
With permission from ASCE. 

ki = Gi
, i = 1, 2, ... , N 

2h 
(7.27) 

where ki is the spring constant of the spring connecting the masses mi and mi+ 1,
and Gi is the shear modulus of layer i.

The equation of motion of the system can be given by the expression 

[M]{u} + [C]{u} + [K]{u} = {R(t)} (7.28) 
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Figure 7.10 Stress and strain developed within the layer of soil shown in 
Figure 7.6 (from Idriss and Seed, 1968) 

Source: Idriss, I.M. and Seed, H.B. (1968). "Seismic Response of Horizontal Soil Layers," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031. 

With permission from ASCE. 

where [ M] is a matrix for mass, [ C] is a matrix for viscous damping, [ K] is the stiff
ness matrix, and {u}, {u}, and {ii} are relative displacement, relative velocity, and rela
tive acceleration vectors, respectively. The matrices [M], [C], and [K] are of the order 
N (the number of layers considered). The matrix [M] is a diagonal matrix such that 

diag[M] = (m1 , m2, m3, .. . , mN ) 

The matrix [ K] is tridiagonal and symmetric and 

K11 = k1 

K-- = k- 1 + k-l] l - l 

Kij = -ki

K--=-k-
lj 1 

All other Kij are equal to zero. 
The load vector {R(t)} is 

for i = j 

for i = j- l 

for i = j + l 

{R(t)} = - col (m1 , m2, .. . , mN ) iig

(7.29) 

(7.30) 

A computer program for solution of Eq. (7 .28) is given in Idriss and Seed 
(1967, Appendix C). The general outline of the solution is as follows: 

1. The number of layers of soil (N) and the mass and stiffness matrices are first
obtained.
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Figure 7.11 Lumped mass idealization of horizontal soil layers 

2. The mode shapes and frequencies are obtained from the characteristic value
problem as

(7.31) 

where </)t is the mode shape at the ith level during the nth mode of vibration 
and Wn is the circular frequency at the nth mode of vibration. 

3. Equation (7.28) is then reduced to a set of uncoupled normal equa
tions. The normal equations are solved for the response of each mode
at each instant of time. The relative displacements at level i can then be
expressed as

ui(t) = L</Jt Xn (t) (7.32) 
n=l 
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7 I Earthquake and Ground Vibration 

where X n ( t) is the normal coordinate for the nth mode and ui ( t) is the relative 
displacements at the ith level at time t. 

4. The relative velocity [ui (t)] and the relative acceleration [ui (t)] can be obtained

by differentiation of Eq. (7.32), or

N 

ili (f) = L </Jt Xn (f) (7.33) 
n =1 

N 

ui (t) = L <1>t .1\u) (7.34) 
n=l 

5. The total acceleration, velocity, and displacement at level i and time t can be
given as follows:

Total acceleration = ui (t) + ii
g

Total velocity = ili (t) + il
g

Total displacement= ui (t) + u
g

6. The shear strain between level i and i + 1 can be expressed as

[ ui ( t) - ui + 1 ( t)] / 2h

7. The shear stress between level i and i + 1 can now be obtained as

ri (t) = (shear strain)G 

Degree of Accuracy and Stability of the Analysis 

(7.35) 

(7.36) 

The degree of accuracy of the lumped mass solution depends on the number of 
layers of soils used in an analysis. (Note: The value of the shear modulus for each 
layer is assumed to be constant.) In order to select a reasonable number of layers 
Nwith a tolerable degree of accuracy, Idriss and Seed (1968) prepared the graph 
shown in Figure 7. 12, where ERS means the percentage of error in the lumped 
mass representation. 

The use of this figure can be explained as follows: 
Let the height, shear modulus, and unit weight of the ith layer of soil be Hi, 

Gi, and Yi respectively. The fundamental frequency of this layer can be obtained 
from Eq. (7.24) as 

-[(2n -l)n]ti 
COn(i) - ---- -

2Hi Pi 

( 7t )fi = -- - forn = l 
2Hi Pi 
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Figure 7.12 Plot of N versus r1 for equal values of ERS (from Idriss and Seed,
1968) 

Source: Idriss, I .M. and Seed, H.B. (1968). "Seismic Response of Horizontal Soil Layers," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031. 

With permission from ASCE. 

Hence, the fundamental period can be given by 

21t 4Hi 

Ti.(i) = -- - ----;:::===

W1(i) �Gig/yi 

where g is acceleration due to gravity. 

(7.37) 

Using the value of this, Ti(i) and a given value of ERS, the value of Ni can be 
obtained from Figure 7.12; this is the number of layers into which the ith layer 
has to be divided for the analysis of the ground vibration. Since this needs to be 
done for each layer of soil, 

(7.38) 

For the stability of the lumped mass solution, Idriss and Seed (1978) have 
suggested the following condition. 

For the step-by-step solution (Berg and Housner, 1961; Wilson and Clough, 1962): 

TNN > 2�t 

For Newmark's iterative solution (1962) 

TNN > 5�t 

(7.39) 

(7.40)
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7 I Earthquake and Ground Vibration 

where �tis the time interval used for integrating the normal equations and TNN

is the lowest period included in the analysis. Note that this corresponds to the 
highest mode of vibration. 

General Remarks for Ground Vibration Analysis 

First of all, it should be kept in mind that soil deposits, in general, tend to amplify 
the underlying rock motion to some degree. 

Secondly, for appropriate analysis of ground motion due to an earthquake, it 
is necessary that an earthquake acceleration-time record be available at the level 
of the bedrock or bedrock-like material for a given site. The design accelerogram 
can be obtained by selecting an actual motion, which has been recorded in the 
past, of a somewhat similar magnitude and fault distance as the design condi
tions. This accelerogram is then modified by taking into account the differences 
between the recorded and design conditions. This modification can be better 
explained by the following example. 

Let the design earthquake be of magnitude 7 and the site be located at a dis
tance of 80 km. Hence, its predominant period at bedrock or bedrock-like mate

rial is 0.4 s (Figure 7.6) and the maximum acceleration is of the order of 0.04g 
(Figure 7. 7). The estimated duration of this earthquake is about 30 s ( equal to the 
duration of the fault break; Section 7.7). Also, let the recorded earthquake have 
a predominant period of 0.45 s, maximum acceleration of 0.05g, and a duration 
of 40 s. The recorded earthquake may now be modified by reducing the ordinates 
(i.e., magnitudes of acceleration) by 0.04/0.05 = 4/5 and by compressing the time 
scale by 0.40/0.45 = 8/9. This results in a maximum acceleration of 0.04g with a 
predominant period of 0.4 s and a duration of 35.5 s. The first 30 s of this accel
erogram can now be taken for the analysis of ground motion. 

Appropriate parts of an accelerogram could be repeated to obtain the desired 
period of predicted significant motion. 

EXAMPLE 7.1 

In a soil deposit, a clay layer has a thickness of 16 m. The unit weight and the 
shear modulus of the clay soil deposit are 17 .8 kN/m3 and 24,000 kPa, respec
tively. Determine the number of layers into which this should be divided so 
that the ERS in the lumped mass solution does not exceed 5%. 

SOLUTION: 

Given that Hi
= 16 m and Gi = 24,000 kPa . From Eq. (7.37), 

T, _

4Hi ( 4)(16) 
= 0_566 s I( i) -

)Gig/yi )(24,000 X 9.8 1)/17.8 
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7.6 Other Studies for Vibration of Soil Layers Due to Earthquakes 

From Figure 7.12, with Ti.ci) = 0.556 s and ERS = 5%, the value of Ni is equal 
to 3. Thus, this clay layer should be subdivided into at least 3 layers with thick
ness of 5.33 m each.

El OTHER STUDIES FOR VIBRATION OF SOIL LAYERS

DUE TO EARTHQUAKES 

In the preceding section, for the evaluation of the ground vibration, it was 
assumed that 

1. the soil layer(s) possess linearly elastic properties, and
2. the soil layer( s) are horizontal.

Under strong ground-shaking conditions, the stress-strain relationships may
be of the nature shown in Figure 7 .13a and not linearly elastic. This type of 
stress-strain relationship can be approximated to a bilinear system as shown in 
Figure 7 .13b, and the analysis of ground vibration can then be carried out. 

The lumped mass type of solution using bilinear stress-strain relationships of 
horizontally layered soils (Figure 7 .14) have been presented by Parmelee et al. (1964) 
and Idriss and Seed (1967, 1968), whose works may be examined for further details. 

Studies of the vibration of soils with sloping boundaries have also been 
made by Idriss, Dezfulian, and Seed (1969) and Dezfulian and Seed (1970). 
This involves a finite element method of analysis. For a computer program of 
such an analysis, refer to Idriss, Dezfulian, and Seed. 

Shear strain 

(a) 

! y'l G - - - -
] 2' 

(b) 

: Shear strain 

Figure 7.13 Shear stress-strain characteristics of soil: (a) stress-strain curve; 
(b) bilinear idealization
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Figure 7.14 Lumped parameter solution of a semi-infinite layer: bilinear 
solution (from Idriss and Seed, 1968) 

Source: Idriss, I.M. and Seed, H.B. (1968). "Seismic Response of Horizontal Soil Layers," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031. 

With permission from ASCE. 

Ill EQUIVALENT NUMBER OF SIGNIFICANT UNIFORM

STRESS CYCLES FOR EARTHQUAKES 

In the study of soil liquefaction of granular soils (Chapter 10), it becomes neces
sary to determine the equivalent number of significant uniform stress cycles for 
an earthquake that has irregular stress-time history. This is explained with the aid 
of Figure 7 .15. Figure 7.15a shows the irregular pattern of shear stress on a soil 
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7.7 Equivalent Number of Significant Uniform Stress Cycles for Earthquakes 
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Figure 7.15 Equivalent uniform stress cycles: (a) irregular stress-time history; 
(b) equivalent uniform stress-time history

deposit with time for an earthquake. The maximum shear stress induced is 't'max· 

This irregular stress-time history may be equivalent to uniformly intense N num
ber of cyclic shear stresses of maximum magnitude equal to {3r max (Figure 7 .15b ). 
The term equivalent means that the effect of the stress history shown in Figure 
7.15a on a given soil deposit should be the same as the uniform stress cycles as 
shown in Figure 7 .15b. From the point of view of soil liquefaction, this fact has 
been studied by Lee and Chan (1972), Seed et al. (1975), Seed (1976, 1979), and 
Valera and Donovan (1977). 

The basic procedure involved in developing the equivalent stress cycles 
is fairly simple and has been described by Seed et al. (1975). This is done by 
using the results of the soil liquefaction study by simple shear tests obtained by 
DeAlba, Chan, and Seed (1975). Figure 7.16 shows a plot of r/'t'max against the 
equivalent number of uniform cyclic stresses Nat a maximum stress magnitude 
of 0.65 't'max· This means, for example, that one cycle of shear stress of maximum 
magnitude of 't'max is equivalent to three cycles of shear stress of maximum mag
nitude 0.65 't'max· Similarly, one cycle of shear stress with maximum magnitude of 
0.75 't'max is equivalent to 1.4 cycles of shear stress with a maximum magnitude of 
0.65 't'max· Figure 7.16 can be used to evaluate the values of N for various earth
quakes for a maximum magnitude of uniform cyclic shear stress level equaling 
0.65 't'

max
·(Note: f3 = 0.65.) This can be most effectively explained by a numerical 

example. While doing this, one must recognize that, within the top 6--7 m of a 
given soil deposit, the cyclic shear stress-time history of an earthquake is similar 
in form to the acceleration-time history at the ground surf ace. 
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Figure 7.16 Plot of r/rmax versus Nat r = 0.65 rmax (from Seed at al 1975) 

Source: Seed, H.B., Idriss, I.M. Makdidi, F. and Banerjee, N. (1975). "Representation of Irregular 
Stress-Time Histories by EquivalentUniform Stress Series of Liquefaction Analyses," Report 
No. EERC 75-29. Earthquake Engineering Research Center, University of California , Berkley. 
Reprinted by permission of the PEER Center, UC Berkeley. 

The acceleration-time history for the San Jose earthquake (1955) is shown in 

Figure 7 .17. Note that the maximum acceleration in this case is 0.106 g. Hence, 

'rmax is proportional to 0.106 g. In order to determine N, one needs to prepare 
Table 7.5. This can be done in the following manner. 

1. Looking at Figure 7 .17, determine the number of stress cycles at various

stress levels such as 'rmax, 0.95 'rmax, 0.9 'rmax ... , above the horizontal axis

(col. 2) and below the horizontal axis (col. 5).

0.106 

:§ 
..... 

-0.106
0 2 4 6 8 10 12 

Time (s) 

Figure 7.17 San Jose earthquake record, 1955 (from Seed et al., 1975) 

Source: Seed, H.B., Idriss, I.M. Makdidi, F. and Banerjee, N. (1975). "Representation of Irregular 
Stress-Time Histories by EquivalentUniform Stress Series of Liquefaction Analyses," Report 
No. EERC 75-29. Earthquake Engineering Research Center, University of California , Berkley. 
Reprinted by permission of the PEER Center, UC Berkeley. 
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7.7 Equivalent Number of Significant Uniform Stress Cycles for Earthquakes 

Table 7.5 Example of Determination of Equivalent Uniform Cyclic Stress Series from 
Figure 7 .14a

Above horizontal axis Below horizontal axis 

Stress level 
( 't'max) 

No. of stress 

(1) 

1.00 

0.95 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

aseed et al. (1975) 

cycles 

(2) 

1 

1 

1 

1 

2 

Conversion 
factor 

(3) 

3.00 

0.70 

0.40 

0.04 

0.02 

Total 

Equivalent 
no. of cycles 
at 0.65 't'max 

(4) 

3.00 

0.70 

0.40 

0.04 

0.04 

4.2 

No. of stress 
cylces 

(5) 

1 

1 

1 

1

1

Average number of cycles of 0.65 r max = 4.2 

Conversion 
factor 

(6) 

2.05 

1.70 

0.40 

0.04 

0.02 

Total 

Equivalent 
no. of cycles 
at 0.65 'rmax 

(7) 

2.05 

1.70 

0.40 

0.04 

0.02 

4.2 

Source: Seed, H.B., Idriss, I.M. Makdidi, F. and Banerjee, N. (1975). "Representation of Irregular Stress-Time Histories 
by Equivalent Uniform Stress Series of Liquefaction Analyses," Report No. EERC 75-29. Earthquake Engineering 

Research Center, University of California, Berkley. Reprinted by permission of the PEER Center, UC Berkeley. 

2. Determine the conversion factors from Figure 7.16 (cols. 3 and 6).
3. Determine the equivalent number of uniform cycles at a maximum stress

level of 0.65 'l"max (cols. 4 and 7).
col. 2 X col. 3 = col. 4 

and 
col. 5 X col. 6 = col. 7 

4. Determine the total number of equivalent stress cycles at 0.65 'l"max above and
below the horizontal axis.

5. N =.!_(equivalent no. of cycles above the horizontal
2 

+ equivalent no. of cycles below the horizontal)
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Figure 7.18 Equivalent numbers of uniform stress cycles based on strong 

component of ground motion (from Seed et al. 1975) 

Source: Seed, H.B., Idriss, I.M. Makdidi, F. and Banerjee, N. (1975). "Representation of Irregular 
Stress-Time Histories by EquivalentUniform Stress Series of Liquefaction Analyses," Report

No. EERC 75-29. Earthquake Engineering Research Center, University of California , Berkley. 
Reprinted by permission of the PEER Center, UC Berkeley. 

Equivalent numbers of uniform stress cycles (at a maximum level of 0.65 'rmaJ 
for several earthquakes with magnitudes of 5.3-7.7 analyzed in the preced
ing manner are shown in Figure 7 .18. These are for the strongest component 
of the ground motion recorded. The mean and the mean + 1 standard deviation 
(i.e., 16, 50, and 84 percentile) are also shown. This helps the designer to choose 
the proper value of the equivalent uniform stress cycles, depending on the degree 
of conservation required. 

Using a similar procedure, Lee and Chan (1972) have given the variation of 

N with the earthquake magnitude for maximum uniform cyclic stress levels of 
0.65 rmax, 0.75 rmax, and 0.85 rmax· A cumulative damage approach has also been 
described by Valera and Donovan (1977) for determination of N. This approach 
is based on Miner's law and involves the natural period of the soil deposit and 
the duration of earthquake shaking. 
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Lateral Earth Pressure 

on Retaining Walls 

1111 INTRODUCTION

Excessive dynamic lateral earth pressure on retaining structures resulting from 
earthquakes has caused major damage in the past. The increase of lateral earth 
pressure during earthquakes induces sliding and/or tilting to the retaining struc
tures. The majority of case histories of failures reported in the literature until 
now concern waterfront structures such as quay walls and bridge abutments. 
Some of the examples of failures and lateral movements of quay walls due to 
earthquakes are given in Table 8.1. Seed and Whitman (1970) have suggested 
that some of these failures may have been due to several reasons, such as 

1. increase of lateral earth pressure behind the wall,
2. reduction of water pressure at the front of the wall, and
3. liquefaction of the backfill material (see Chapter 10)

Nazarian and Hadjan (1979) have given a comprehensive review of the
dynamic lateral earth pressure studies advanced so far. Based on this study, the 
theories can be divided into three broad categories, such as 

1. fully plastic (static or pseudostatic) solution,
2. solutions based on elastic wave theory, and
3. solutions based on elastoplastic and nonlinear theory.

Because of the complex soil-structure interaction (mode of wall movement)
during earthquakes, the lateral earth pressure theory based on the fully plastic 
solution ( also known as pseudo static method), which is widely used by most of the 
design engineers, is detailed in this chapter. In most of the codes of practice, for 
the soils that do not lose shear strength during shaking, an increase (about 33%) 
in bearing capacity and passive earth pressure is generally recommended. 

ID MONONOBE-OKABE ACTIVE EARTH PRESSURE THEORY

In 1776, Coulomb derived an equation for active earth pressure on a retaining 
wall due to a dry cohesionless backfill (Figure 8.1 ), which is of the form 
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8 I Lateral Earth Pressure on Retaining Walls 

1 2 (8.1) PA =-rH KA 
2 

Table 8.1 Failures and Movements of Quay Wallsa

Distance from Approximate 
Earthquake Date Me Harbor Epicenter Damage Movement 

Kitaizu 25 November 7.1 Shimizu 48km Failure of gravity 7.93m 
1930 wallsh

Shizuoka 11 July 1935 Shimizu Retaining wall 4.88m 
collapseb

Tonankai 7 December 8.2 Shimizu 175 km Sliding of retaining 
1944 wallh

Nagoya 128 km Outward movement 3.05-3.96m 
of bulkhead with 
relieving platform b 

Yokkaichi 144km Outward movement 3.66m 
of pile-supported 
deckb

Nankai 21 December 8.1 Nagoya 200-304 km Outward movement 3.96m 
1946 of bulkhead with 

relieving platform b

Osaka 200-304 km Failure of retaining 4.27m 
wall above relieving 
platformb

Yokkaichi 200-304 km Outward movement 3.66m 
of pile-supported 
deckb 

Uno Outward movement 0.61 m 
of gravity wallh

Tokachioki 4 March 1952 7.8 Kushiro 144km Outward movement 5.49m 
of gravity wallh

Chile 22 May 1960 8.4 Puerto 112km Complete >4.57m
Montt over-turning of 

gravity wallsc

Outward move- 0.60-0.9m 
ment of anchored 
bulkheadsc

Niigata 16June 1964 7.5 Niigata 51.2 km Tilting of gravity 3.05m 
wall<l 

Outward move- 0.30-2.1 m 
ment of anchored 
bulkheads<l

a After Seed and Whitman (1970) 
b Reported by Amano, Azuma, and Ishii (1956) 

c Reported by Duke and Leeds (1963) 
d Reported by Hayashi, Kubo, and Nakase (1966) 

e Magnitude 

Source: Seed, H.B., and Whitman, R .  V. (1970). "Design of Earth Retaining Structures for 
Dynamic Loads," Proceedings, Specialty Conference on Lateral Stresses in the Ground and Design 

of Earth Retaining Structures, ASCE, pp. 103-147. With permission from ASCE. 
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H 

8.2 Mononobe-Okabe Active Earth Pressure Theory 

w 

N 

Unit weight of soil= y 

Friction angle = </J 

Figure 8.1 Coulomb's active earth pressure (Note: BC is the failure plane; 
W = weight of the wedge ABC; S and N = shear and normal forces on the plane 
BC; F = resultant of S and N)

where 

where 

PA
= active force per unit length of the wall 

r = unit weight of soil 
H = height of the retaining wall 

KA = active earth pressure coefficient 
cos2 ( ¢ - /3)

cos2 /3 cos( 8 + /3) [1 + { sin( 8 +</))sin(¢ - i) }
112 

]
2 

cos( 8 + /3) cos(/3 - i)

(/) = soil friction angle 
8 = angle of friction between the wall and the soil 
f3 = slope of the back of the wall with respect to the vertical 
i = slope of the backfill with respect to the horizontal 

(8.2) 

The values of KA for f3 = 0° , i = 0° and various values of ¢ and 8 are given in 
Table 8.2. 

In the actual design of retaining walls, the value of the wall friction 8 is 
assumed to be between ¢/2 and f ¢. The active earth pressure coefficients for 
various values of ¢, i, and /3, with 8 = f </) and 8 = ¢>, are given in Tables 
8.3 and 8.4, respectively. This is a very useful table foi design considerations.
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8 I Lateral Earth Pressure on Retaining Walls 

Table 8.2 Values of KA [Eq. (8.2)] for f3 = 0° and i = 0°

o(deg) 

<f, (deg) 0 5 10 15 20 25 

28 0.3610 0.3448 0.3330 0.3251 0.3203 0.3186 

30 0.3333 0.3189 0.3085 0.3014 0.2973 0.2956 

32 0.3073 0.2945 0.2853 0.2791 0.2755 0.2745 

34 0.2827 0.2714 0.2633 0.2579 0.2549 0.2542 

36 0.2596 0.2497 0.2426 0.2379 0.2354 0.2350 

38 0.2379 0.2292 0.2230 0.2190 0.2169 0.2167 

40 0.2174 0.2098 0.2045 0.2011 0.1994 0.1995 

42 0.1982 0.1916 0.1870 0.1841 0.1828 0.1831 

Coulomb's active earth pressure equation can be modified to take into 
account the vertical and horizontal coefficients of acceleration induced by 
an earthquake. This is generally referred to as the Mononobe-Okabe analysis 

(Mononobe, 1929; Okabe, 1926). The Mononobe-Okabe solution is based on the 
following assumptions: 

1. The failure in soil takes place along a plane such as BC shown in Figure 8.2.
2. The movement of the wall is sufficient to produce minimum active pressure.
3. The shear strength of the dry cohesionless soil can be given by the equation

s 
= 

cr'tan</) (8.3) 

where a' is the effective stress and s is shear strength. 
4. At failure, full shear strength along the failure plane (plane BC, Figure 8.2)

is mobilized.
5. The soil behind the retaining wall behaves as a rigid body.

Figure 8.2 shows the forces considered in the Mononobe-Okabe solution.
Line AB is the back face of the retaining wall and ABC is the soil wedge which 
will fail. The forces on the failure wedge per unit length of the wall are 

a. weight of wedge W;

b. active force PAE;
c. resultant of shear and normal forces along the failure plane F; and
d. k

hW and k
vW, the inertia forces in the horizontal and vertical directions,

respectively, where,

k
h 

= horiz. component of earthquake accel. 

g 

k
v 

= vert. component of earthquake accel. 

g 

and g is acceleration due to gravity. 
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8.2 Mononobe-Okabe Active Earth Pressure Theory 

Table 8.3 Values of KA 
[Eq. (8.2)] (Note: 8 = t</>)

/j(deg) 

i (deg) </J(deg) 0 5 10 15 20 25 

0 28 0.3213 0.3588 0.4007 0.4481 0.5026 0.5662 

29 0.3091 0.3467 0.3886 0.4362 0.4908 0.5547 

30 0.2973 0.3349 0.3769 0.4245 0.4794 0.5435 

31 0.2860 0.3235 0.3655 0.4133 0.4682 0.5326 

32 0.2750 0.3125 0.3545 0.4023 0.4574 0.5220 

33 0.2645 0.3019 0.3439 0.3917 0.4469 0.5117 

34 0.2543 0.2916 0.3335 0.3813 0.4367 0.5017 

35 0.2444 0.2816 0.3235 0.3713 0.4267 0.4919 

36 0.2349 0.2719 0.3137 0.3615 0.4170 0.4824 

37 0.2257 0.2626 0.3042 0.3520 0.4075 0.4732 

38 0.2168 0.2535 0.2950 0.3427 0.3983 0.4641 

39 0.2082 0.2447 0.2861 0.3337 0.3894 0.4553 

40 0.1998 0.2361 0.2774 0.3249 0.3806 0.4468 

41 0.1918 0.2278 0.2689 0.3164 0.3721 0.4384 

42 0.1840 0.2197 0.2606 0.3080 0.3637 0.4302 

5 28 0.3431 0.3845 0.4311 0.4843 0.5461 0.6190 

29 0.3295 0.3709 0.4175 0.4707 0.5325 0.6056 

30 0.3165 0.3578 0.4043 0.4575 0.5194 0.5926 

31 0.3039 0.3451 0.3916 0.4447 0.5067 0.5800 

32 0.2919 0.3329 0.3792 0.4324 0.4943 0.5677 

33 0.2803 0.3211 0.3673 0.4204 0.4823 0.5558 

34 0.2691 0.3097 0.3558 0.4088 0.4707 0.5443 

35 0.2583 0.2987 0.3446 0.3975 0.4594 0.5330 

36 0.2479 0.2881 0.3338 0.3866 0.4484 0.5221 

37 0.2379 0.2778 0.3233 0.3759 0.4377 0.5115 

38 0.2282 0.2679 0.3131 0.3656 0.4273 0.5012 

39 0.2188 0.2582 0.3033 0.3556 0.4172 0.4911 

40 0.2098 0.2489 0.2937 0.3458 0.4074 0.4813 

41 0.2011 0.2398 0.2844 0.3363 0.3978 0.4718 

42 0.1927 0.2311 0.2753 0.3271 0.3884 0.4625 

10 28 0.3702 0.4164 0.4686 0.5287 0.5992 0.6834 

29 0.3548 0.4007 0.4528 0.5128 0.5831 0.6672 

30 0.3400 0.3857 0.4376 0.4974 0.5676 0.6516 

31 0.3259 0.3713 0.4230 0.4826 0.5526 0.6365 

32 0.3123 0.3575 0.4089 0.4683 0.5382 0.6219 

33 0.2993 0.3442 0.3953 0.4545 0.5242 0.6078 

34 0.2868 0.3314 0.3822 0.4412 0.5107 0.5942 

( Continued) 
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8 I Lateral Earth Pressure on Retaining Walls 

Table 8.3 ( Continued) 

/3(deg) 

i(deg) <f,(deg) 0 5 10 15 20 25 

35 0.2748 0.3190 0.3696 0.4283 0.4976 0.5810 

36 0.2633 0.3072 0.3574 0.4158 0.4849 0.5682 

37 0.2522 0.2957 0.3456 0.4037 0.4726 0.5558 

38 0.2415 0.2846 0.3342 0.3920 0.4607 0.5437 

39 0.2313 0.2740 0.3231 0.3807 0.4491 0.5321 

40 0.2214 0.2636 0.3125 0.3697 0.4379 0.5207 

41 0.2119 0.2537 0.3021 0.3590 0.4270 0.5097 

42 0.2027 0.2441 0.2921 0.3487 0.4164 0.4990 

15 28 0.4065 0.4585 0.5179 0.5868 0.6685 0.7670 

29 0.3881 0.4397 0.4987 0.5672 0.6483 0.7463 

30 0.3707 0.4219 0.4804 0.5484 0.6291 0.7265 

31 0.3541 0.4049 0.4629 0.5305 0.6106 0.7076 

32 0.3384 0.3887 0.4462 0.5133 0.5930 0.6895 

33 0.3234 0.3732 0.4303 0.4969 0.5761 0.6721 

34 0.3091 0.3583 0.4150 0.4811 0.5598 0.6554 

35 0.2954 0.3442 0.4003 0.4659 0.5442 0.6393 

36 0.2823 0.3306 0.3862 0.4513 0.5291 0.6238 

37 0.2698 0.3175 0.3726 0.4373 0.5146 0.6089 

38 0.2578 0.3050 0.3595 0.4237 0.5006 0.5945 

39 0.2463 0.2929 0.3470 0.4106 0.4871 0.5805 

40 0.2353 0.2813 0.3348 0.3980 0.4740 0.5671 

41 0.2247 0.2702 0.3231 0.3858 0.4613 0.5541 

42 0.2146 0.2594 0.3118 0.3740 0.4491 0.5415 

20 28 0.4602 0.5205 0.5900 0.6714 0.7689 0.8880 

29 0.4364 0.4958 0.5642 0.6445 0.7406 0.8581 

30 0.4142 0.4728 0.5403 0.6195 0.7144 0.8303 

31 0.3935 0.4513 0.5179 0.5961 0.6898 0.8043 

32 0.3742 0.4311 0.4968 0.5741 0.6666 0.7799 

33 0.3559 0.4121 0.4769 0.5532 0.6448 0.7569 

34 0.3388 0.3941 0.4581 0.5335 0.6241 0.7351 

35 0.3225 0.3771 0.4402 0.5148 0.6044 0.7144 

36 0.3071 0.3609 0.4233 0.4969 0.5856 0.6947 

37 0.2925 0.3455 0.4071 0.4799 0.5677 0.6759 

38 0.2787 0.3308 0.3916 0.4636 0.5506 0.6579 

39 0.2654 0.3168 0.3768 0.4480 0.5342 0.6407 

40 0.2529 0.3034 0.3626 0.4331 0.5185 0.6242 

41 0.2408 0.2906 0.3490 0.4187 0.5033 0.6083 

42 0.2294 0.2784 0.3360 0.4049 0.4888 0.5930 
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8.2 Mononobe-Okabe Active Earth Pressure Theory 

Table 8.4 Values of KA 
[Eq. (8.2)] (Note: 8 = ¢12)

/j(deg) 

i (deg) <f,(deg) 0 5 10 15 20 25 

0 28 0.3264 0.3629 0.4034 0.4490 0.5011 0.5616 

29 0.3137 0.3502 0.3907 0.4363 0.4886 0.5492 

30 0.3014 0.3379 0.3784 0.4241 0.4764 0.5371 

31 0.2896 0.3260 0.3665 0.4121 0.4645 0.5253 

32 0.2782 0.3145 0.3549 0.4005 0.4529 0.5137 

33 0.2671 0.3033 0.3436 0.3892 0.4415 0.5025 

34 0.2564 0.2925 0.3327 0.3782 0.4305 0.4915 

35 0.2461 0.2820 0.3221 0.3675 0.4197 0.4807 

36 0.2362 0.2718 0.3118 0.3571 0.4092 0.4702 

37 0.2265 0.2620 0.3017 0.3469 0.3990 0.4599 

38 0.2172 0.2524 0.2920 0.3370 0.3890 0.4498 

39 0.2081 0.2431 0.2825 0.3273 0.3792 0.4400 

40 0.1994 0.2341 0.2732 0.3179 0.3696 0.4304 

41 0.1909 0.2253 0.2642 0.3087 0.3602 0.4209 

42 0.1828 0.2168 0.2554 0.2997 0.3511 0.4117 

5 28 0.3477 0.3879 0.4327 0.4837 0.5425 0.6115 

29 0.3337 0.3737 0.4185 0.4694 0.5282 0.5972 

30 0.3202 0.3601 0.4048 0.4556 0.5144 0.5833 

31 0.3072 0.3470 0.3915 0.4422 0.5009 0.5698 

32 0.2946 0.3342 0.3787 0.4292 0.4878 0.5566 

33 0.2825 0.3219 0.3662 0.4166 0.4750 0.5437 

34 0.2709 0.3101 0.3541 0.4043 0.4626 0.5312 

35 0.2596 0.2986 0.3424 0.3924 0.4505 0.5190 

36 0.2488 0.2874 0.3310 0.3808 0.4387 0.5070 

37 0.2383 0.2767 0.3199 0.3695 0.4272 0.4954 

38 0.2282 0.2662 0.3092 0.3585 0.4160 0.4840 

39 0.2185 0.2561 0.2988 0.3478 0.4050 0.4729 

40 0.2090 0.2463 0.2887 0.3374 0.3944 0.4620 

41 0.1999 0.2368 0.2788 0.3273 0.3840 0.4514 

42 0.1911 0.2276 0.2693 0.3174 0.3738 0.4410 

10 28 0.3743 0.4187 0.4688 0.5261 0.5928 0.6719 

29 0.3584 0.4026 0.4525 0.5096 0.5761 0.6549 

30 0.3432 0.3872 0.4368 0.4936 0.5599 0.6385 

31 0.3286 0.3723 0.4217 0.4782 0.5442 0.6225 

32 0.3145 0.3580 0.4071 0.4633 0.5290 0.6071 

33 0.3011 0.3442 0.3930 0.4489 0.5143 0.5920 

34 0.2881 0.3309 0.3793 0.4350 0.5000 0.5775 

( Continued) 
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8 I Lateral Earth Pressure on Retaining Walls 

Table 8.4 ( Continued) 

/3(deg) 

i(deg) <f,(deg) 0 5 10 15 20 25 

35 0.2757 0.3181 0.3662 0.4215 0.4862 0.5633 

36 0.2637 0.3058 0.3534 0.4084 0.4727 0.5495 

37 0.2522 0.2938 0.3411 0.3957 0.4597 0.5361 

38 0.2412 0.2823 0.3292 0.3833 0.4470 0.5230 

39 0.2305 0.2712 0.3176 0.3714 0.4346 0.5103 

40 0.2202 0.2604 0.3064 0.3597 0.4226 0.4979 

41 0.2103 0.2500 0.2956 0.3484 0.4109 0.4858 

42 0.2007 0.2400 0.2850 0.3375 0.3995 0.4740 

15 28 0.4095 0.4594 0.5159 0.5812 0.6579 0.7498 

29 0.3908 0.4402 0.4964 0.5611 0.6373 0.7284 

30 0.3730 0.4220 0.4777 0.5419 0.6175 0.7080 

31 0.3560 0.4046 0.4598 0.5235 0.5985 0.6884 

32 0.3398 0.3880 0.4427 0.5059 0.5803 0.6695 

33 0.3244 0.3721 0.4262 0.4889 0.5627 0.6513 

34 0.3097 0.3568 0.4105 0.4726 0.5458 0.6338 

35 0.2956 0.3422 0.3953 0.4569 0.5295 0.6168 

36 0.2821 0.3282 0.3807 0.4417 0.5138 0.6004 

37 0.2692 0.3147 0.3667 0.4271 0.4985 0.5846 

38 0.2569 0.3017 0.3531 0.4130 0.4838 0.5692 

39 0.2450 0.2893 0.3401 0.3993 0.4695 0.5543 

40 0.2336 0.2773 0.3275 0.3861 0.4557 0.5399 

41 0.2227 0.2657 0.3153 0.3733 0.4423 0.5258 

42 0.2122 0.2546 0.3035 0.3609 0.4293 0.5122 

20 28 0.4614 0.5188 0.5844 0.6608 0.7514 0.8613 

29 0.4374 0.4940 0.5586 0.6339 0.7232 0.8313 

30 0.4150 0.4708 0.5345 0.6087 0.6968 0.8034 

31 0.3941 0.4491 0.5119 0.5851 0.6720 0.7772 

32 0.3744 0.4286 0.4906 0.5628 0.6486 0.7524 

33 0.3559 0.4093 0.4704 0.5417 0.6264 0.7289 

34 0.3384 0.3910 0.4513 0.5216 0.6052 0.7066 

35 0.3218 0.3736 0.4331 0.5025 0.5851 0.6853 

36 0.3061 0.3571 0.4157 0.4842 0.5658 0.6649 

37 0.2911 0.3413 0.3991 0.4668 0.5474 0.6453 

38 0.2769 0.3263 0.3833 0.4500 0.5297 0.6266 

39 0.2633 0.3120 0.3681 0.4340 0.5127 0.6085 

40 0.2504 0.2982 0.3535 0.4185 0.4963 0.5912 

41 0.2381 0.2851 0.3395 0.4037 0.4805 0.5744 

42 0.2263 0.2725 0.3261 0.3894 0.4653 0.5582 
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8.2 Mononobe-Okabe Active Earth Pressure Theory 
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Figure 8.2 Derivation of Mononobe-Okabe equation 

Unit weight of soil= r

Friction angle = ,P 

The active force determined by the wedge analysis described here may be 
expressed as 

where KAE is the active earth pressure coefficient with earthquake effect: 

cos2(</J -0 - /3) 
KAE = -------------------------

l 
sin( </J + 8) sin( </J - 0 - i) 

1
2 

cos0cos2 {3cos(8 + f3 + 0) 1 + 
cos( 8 + f3 + 0) cos(i - /3) 

(8.4) 

(8.5) 
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8 I Lateral Earth Pressure on Retaining Walls 
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Figure 8.3 Inclination of the failure plane with the horizontal (from Davies, 
Richards, and Chen, 1986) 
Source: Davies, T.G., Richards, R., and Chen, K.H. (1986). "Passive Pressure during Seismic 

Loading," Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT4, pp. 479-484. 

With permission from ASCE. 

(8.6) 

Equation (8.4) is generally referred to as the Mononobe-Okabe active earth pres

sure equation. For the active force condition (PAE ), the angle a that the soil wedge 
ABC located behind the retaining wall (Figure 8.2) makes with the horizontal 
(for kv = 0° , f3 = 0° , i = 0° , ¢ = 30° , and 8 = 0° and 20°) is shown in Figure 8.3. 

Tables 8.5 through 8.8 give the values of KAE [Eq. (8.5)] for various values of 
(/J, 8, i, and kh with kv = 0 and /3 = 0° , 5° , 10° , and 15°. 

Table 8.5 Values of KAE [Eq. (8.5)] with kv = 0 and /3 = 0°

tf> (deg) 

kh �(deg) i(deg) 28 30 35 40 45 

0.1 0 0 0.427 0.397 0.328 0.268 0.217 

0.2 0.508 0.473 0.396 0.382 0.270 
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8.2 Mononobe-Okabe Active Earth Pressure Theory 

Table 8.5 ( Continued) 

</> (deg) 

kh o(deg) i(deg) 28 30 35 40 45 

0.3 0.611 0.569 0.478 0.400 0.334 

0.4 0.753 0.697 0.581 0.488 0.409 

0.5 1.005 0.890 0.716 0.596 0.500 

0.1 0 5 0.457 0.423 0.347 0.282 0.227 

0.2 0.554 0.514 0.424 0.349 0.285 

0.3 0.554 0.514 0.424 0.349 0.285 

0.4 0.942 0.825 0.653 0.535 0.442 

0.5 0.855 0.673 0.551 

0.1 0 10 0.497 0.457 0.371 0.299 0.238 

0.2 0.623 0.570 0.461 0.375 0.303 

0.3 0.856 0.748 0.585 0.472 0.383 

0.4 0.780 0.604 0.486 

0.5 0.809 0.624 

0.1 (/)/2 0 0.396 0.368 0.306 0.253 0.207 

0.2 0.485 0.452 0.380 0.319 0.267 

0.3 0.604 0.563 0.474 0.402 0.340 

0.4 0.778 0.718 0.599 0.508 0.433 

0.5 1.115 0.972 0.774 0.648 0.552 

0.1 (/)/2 5 0.428 0.396 0.326 0.268 0.218 

0.2 0.537 0.497 0.412 0.342 0.283 

0.3 0.699 0.640 0.526 0.438 0.367 

0.4 1.025 0.881 0.690 0.568 0.475 

0.5 0.962 0.752 0.620 

0.1 (/)/2 10 0.472 0.433 0.352 0.285 0.230 

0.2 0.616 0.562 0.454 0.371 0.303 

0.3 0.908 0.780 0.602 0.487 0.400 

0.4 0.857 0.656 0.531 

0.5 0.944 0.722 

0.1 (2/3) </J 0 0.393 0.366 0.306 0.256 0.212 

0.2 0.486 0.454 0.384 0.326 0.276 

0.3 0.612 0.572 0.486 0.416 0.357 

0.4 0.801 0.740 0.622 0.533 0.462 

0.5 1.177 1.023 0.819 0.693 0.600 

0.1 (2/3) </J 5 0.427 0.395 0.327 0.271 0.224 

0.2 0.541 0.501 0.418 0.350 0.294 

( Continued) 
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8 I Lateral Earth Pressure on Retaining Walls 

Table 8.5 ( Continued) 

q, (deg) 

kh 8(deg) i(deg) 28 30 35 40 45 

0.3 0.714 0.655 0.541 0.455 0.386 

0.4 1.073 0.921 0.722 0.600 0.509 

0.5 1.034 0.812 0.679 

0.1 (2/3) </) 10 0.472 0.434 0.354 0.290 0.237 

0.2 0.625 0.570 0.463 0.381 0.317 

0.3 0.942 0.807 0.624 0.509 0.423 

0.4 0.909 0.699 0.573 

0.5 1.037 0.800 

Table 8.6 Values of KAE [Eq. (8.5)] with k
u 

= 0 and /3 = 5°

</)(deg) 

kh 8(deg) i(deg) 28 30 35 40 45 

0.1 0 0 0.462 0.432 0.363 0.303 0.250 

0.2 0.543 0.509 0.432 0.365 0.306 

0.3 0.647 0.606 0.516 0.439 0.372 

0.4 0.792 0.736 0.622 0.530 0.451 

0.5 1.054 0.936 0.762 0.642 0.546 

0.1 0 5 0.496 0.462 0.386 0.320 0.263 

0.2 0.594 0.554 0.465 0.389 0.324 

0.3 0.733 0.678 0.566 0.475 0.398 

0.4 0.996 0.875 0.702 0.583 0.489 

0.5 0.914 0.728 0.604 

0.1 0 10 0.540 0.500 0.413 0.339 0.277 

0.2 0.669 0.616 0.507 0.419 0.345 

0.3 0.912 0.801 0.635 0.521 0.430 

0.4 0.842 0.660 0.540 

0.5 0.879 0.687 

0.1 </)/2 0 0.434 0.407 0.344 0.291 0.245 

0.2 0.526 0.494 0.423 0.362 0.329 

0.3 0.651 0.610 0.523 0.451 0.389 

0.4 0.836 0.775 0.657 0.566 0.541 

0.5 1.202 1.050 0.847 0.719 0.623 

0.1 </)/2 5 0.472 0.440 0.369 0.309 0.258 

0.2 0.585 0.546 0.460 0.389 0.330 
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8.2 Mononobe-Okabe Active Earth Pressure Theory 

Table 8.6 ( Continued) 

q, (deg) 

kh 8 (deg) i (deg) 28 30 35 40 45 

0.3 0.756 0.698 0.583 0.494 0.421 

0.4 1.111 0.959 0.761 0.636 0.542 

0.5 1.063 0.841 0.705 

0.1 �/2 10 0.521 0.482 0.399 0.331 0.274 

0.2 0.674 0.619 0.509 0.424 0.355 

0.3 0.990 0.855 0.670 0.551 0.462 

0.4 0.952 0.739 0.609 

0.5 1.067 0.827 

0.1 (½)</> 0 0.433 0.407 0.347 0.296 0.253 

0.2 0.530 0.499 0.431 0.373 0.323 

0.3 0.664 0.624 0.540 0.471 0.413 

0.4 0.868 0.806 0.689 0.601 0.531 

0.5 1.284 1.119 0.907 0.781 0.689 

0.1 (½)</> 5 0.472 0.441 0.373 0.316 0.267 

0.2 0.593 0.554 0.471 0.403 0.346 

0.3 0.779 0.719 0.605 0.519 0.449 

0.4 1.175 1.012 0.805 0.681 0.589 

0.5 1.159 0.923 0.787 

0.1 ( ½ )</> 10 0.524 0.486 0.405 0.339 0.284 

0.2 0.688 0.632 0.523 0.440 0.373 

0.3 1.036 0.892 0.701 0.583 0.495 

0.4 1.024 0.800 0.668 

0.5 1.195 0.936 

Table 8.7 Values of KAE [Eq. (8.5)] with kv = 0 and f3 = 10°

(/,(deg) 

kh o(deg) i (deg) 28 30 35 40 45 

0.1 0 0 0.500 0.470 0.402 0.342 0.288 

0.2 0.582 0.549 0.473 0.406 0.346 

0.3 0.688 0.648 0.559 0.483 0.415 

0.4 0.838 0.782 0.669 0.577 0.498 

0.5 1.115 0.993 0.816 0.695 0.599 

0.1 0 5 0.539 0.505 0.428 0.362 0.303 

0.2 0.639 0.599 0.510 0.434 0.368 

( Continued) 
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8 I Lateral Earth Pressure on Retaining Walls 

Table 8. 7 ( Continued) 

<f,(deg) 

kh 8 (deg) i (deg) 28 30 35 40 45 

0.3 0.782 0.728 0.615 0.524 0.446 

0.4 1.060 0.935 0.758 0.638 0.543 

0.5 0.984 0.793 0.665 

0.1 0 10 0.588 0.548 0.460 0.385 0.320 

0.2 0.721 0.668 0.558 0.469 0.393 

0.3 0.979 0.863 0.693 0.577 0.484 

0.4 0.914 0.725 0.601 

0.5 0.962 0.760 

0.1 </)/2 0 0.477 0.450 0.388 0.334 0.287 

0.2 0.573 0.542 0.471 0.410 0.412 

0.3 0.705 0.665 0.579 0.507 0.446 

0.4 0.904 0.843 0.724 0.634 0.700 

0.5 1.311 1.147 0.935 0.805 0.709 

0.1 </)/2 5 0.520 0.488 0.417 0.357 0.304 

0.2 0.641 0.601 0.515 0.444 0.383 

0.3 0.825 0.765 0.649 0.559 0.485 

0.4 1.216 1.053 0.845 0.717 0.621 

0.5 1.188 0.950 0.808 

0.1 </)/2 10 0.577 0.538 0.454 0.384 0.324 

0.2 0.742 0.685 0.573 0.486 0.414 

0.3 1.089 0.944 0.750 0.628 0.535 

0.4 1.068 0.840 0.704 

0.5 1.221 0.958 

0.1 (t)</J 0 0.479 0.452 0.394 0.343 0.299 

0.2 0.581 0.551 0.484 0.427 0.378 

0.3 0.724 0.685 0.603 0.536 0.479 

0.4 0.948 0.885 0.768 0.682 0.614 

0.5 1.419 1.239 1.017 0.889 0.800 

0.1 (t)</J 5 0.524 0.493 0.425 0.367 0.318 

0.2 0.653 0.614 0.531 0.464 0.406 

0.3 0.856 0.796 0.680 0.594 0.524 

0.4 1.302 1.124 0.906 0.779 0.687 

0.5 1.319 1.064 0.923 

0.1 (t)</J 10 0.584 0.545 0.463 0.396 0.340 

0.2 0.762 0.705 0.594 0.510 0.441 

0.3 1.151 0.995 0.794 0.672 0.582 

0.4 1.167 0.924 0.786 

0.5 1.400 1.112 
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8.2 Mononobe-Okabe Active Earth Pressure Theory 

Table 8.8 Values of KAE [Eq. (8.5)] with kv = 0 and f3 = 15°

t/J(deg) 

kh o(deg) i (deg) 28 30 35 40 45 

0.1 0 0 0.543 0.514 0.446 0.385 0.329 

0.2 0.626 0.594 0.519 0.451 0.391 

0.3 0.735 0.696 0.608 0.532 0.464 

0.4 0.892 0.836 0.723 0.631 0.552 

0.5 1.190 1.061 0.879 0.756 0.659 

0.1 0 5 0.587 0.554 0.477 0.409 0.348 

0.2 0.691 0.651 0.562 0.485 0.417 

0.3 0.841 0.785 0.672 0.579 0.500 

0.4 1.139 1.007 0.824 0.701 0.604 

0.5 1.069 0.868 0.736 

0.1 0 10 0.643 0.603 0.514 0.437 0.369 

0.2 0.783 0.729 0.617 0.525 0.447 

0.3 1.059 0.937 0.761 0.641 0.545 

0.4 1.000 0.802 0.672 

0.5 1.062 0.846 

0.1 �/2 0 0.526 0.499 0.438 0.384 0.336 

0.2 0.627 0.596 0.527 0.467 0.526 

0.3 0.769 0.729 0.644 0.573 0.512 

0.4 0.987 0.925 0.805 0.714 0.963 

0.5 1.450 1.270 1.044 0.911 0.814 

0.1 �/2 5 0.576 0.544 0.473 0.412 0.358 

0.2 0.705 0.665 0.580 0.508 0.446 

0.3 0.906 0.845 0.727 0.636 0.561 

0.4 1.349 1.169 0.948 0.815 0.717 

0.5 1.348 1.088 0.938 

0.1 �/2 10 0.642 0.602 0.517 0.445 0.384 

0.2 0.822 0.763 0.648 0.559 0.485 

0.3 1.211 1.053 0.847 0.719 0.623 

0.4 1.214 0.965 0.820 

0.5 1.420 1.125 

0.1 ( ½ )</> 0 0.530 0.505 0.447 0.397 0.353 

0.2 0.640 0.611 0.545 0.490 0.442 

0.3 0.796 0.758 0.677 0.613 0.559 

0.4 1.046 0.983 0.866 0.782 0.718 

( Continued) 
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8 I Lateral Earth Pressure on Retaining Walls 

Table 8.8 ( Continued) 

<f,(deg) 

kh 8 (deg) i (deg) 28 30 35 40 45 

0.5 1.597 1.395 1.157 1.029 0.944 

0.1 (t)</> 5 0.583 0.553 0.485 0.427 0.378 

0.2 0.724 0.685 0.603 0.536 0.479 

0.3 0.949 0.887 0.771 0.684 0.616 

0.4 1.465 1.266 1.033 0.902 0.811 

0.5 1.531 1.250 1.105 

0.1 (t)</> 10 0.654 0.615 0.532 0.464 0.406 

0.2 0.851 0.792 0.679 0.593 0.523 

0.3 1.296 1.123 0.908 0.781 0.689 

0.4 1.351 1.083 0.938 

0.5 1.681 1.353 

Ell SOME COMMENTS ON THE ACTIVE

FORCE EQUATION 

Considering the active force relation given by Eqs. (8.4)-(8.6), the term 
sin(¢ -0 -i) in Eq. (8.5) has some important implications. 

First, if ¢ -0 - i < 0 (i.e., negative), no real solution of KAE is possible. Phys
ically it implies that an equilibrium condition will not exist. Hence, for stability, 
the limiting slope of the backfill may be given by 

i<<j)-0 (8.7) 

For no earthquake condition, 0 = O; for stability, Eq. (8.7) gives the familiar 
relation 

. 
< Al l
- 'r

Secondly, for horizontal backfill, i = O; for stability, 

0 < </) 

(8.8) 

(8.9) 

Since 0 = tan- 1 [kh /(l - kv )], for stability, combining Eqs. (8.6) and (8.9) 
results in 

kh < (1-kv ) tan</) 

Hence, the critical value of the horizontal acceleration can be defined as 

kh(cr) = (1-kv )tan</) 

where kh(cr) = critical value of horizontal acceleration (Figure 8.4). 

(8.10) 

(8.11) 
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8.4 Procedure for Obtaining P
AE Using Standard Charts of K

A

10 20 30 

Soil friction angle, </J ( deg) 

Figure 8.4 Critical values of horizontal acceleration (Eq. 8.11) 

EIJ PROCEDURE FOR OBTAINING PAE USING

STANDARD CHARTS OF KA

40 

Since the values of KA are available in most standard handbooks and textbooks, 
Arango (1969) developed a simple procedure for obtaining the values of KAE

from the standard charts of KA . This procedure has been described by Seed and 
Whitman (1970). Referring to Eqs. (8.1) and (8.2), 

1 1 
PA

= -r H
2 KA

= -r H
2 Ac(cos2 /3)- 1

2 2 
(8.12) 
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8 I Lateral Earth Pressure on Retaining Walls 

where 

cos2 (</J - /3) 

[ 1/2 ]2 

cos(D + /3) 1 + { 
sin(8 + </J)sin(</J- i) 

} cos( 8 + /3) cos(/3 - i) 

In a similar manner, from Eq. (8.4) 

where 

Now let 

and 

PAE= !_yH2 (l-kv)KAE
2 
1 

= -yH2 (l-kv )(cos8cos2 {3)- 1 (Am)
2

Am = KA E cos8cos2 /3 
cos2 (</J- f3 - 8) 

[ 
m]2

cos(D + /3 + 8) 1 + { 
sin(</)+ 8)sin(</J - i - 8) 

} cos( 8 + f3 + 8) cos(/3 - i) 

i' = i+ 8

/3' = /3 + 8 
Substitution of Eqs. (8.16) and (8.17) into Eq. (8.15) yields 

cos2 (</J - {3') 

A,,, 

= 

cos( 0 + /1') [1 + { 
sin( </J + 8) sin( </J - i') }112 ]2 

cos( 8 + {3') cos(/3' - i') 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

The preceding equation is similar to Eq. (8.13) except for the fact that i' and /3' 
are used in place of i and /3. Thus, it can be said that 

Am
= Ac(i', /3') = KA (i', /3')cos2 /3' 

The active earth pressure PA E can now be expressed as 

PA E= !yH2 (l-kv)( 
cos2 /3' 

JKA (i', {3') 
2 cos8cos2 f3

where 
* 

= PA(i', {3')(1-kv )(p) (8.19) 

* ( cos2 {3'
Jp = 

cos8cos2 f3
(8.20) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



8.4 Procedure for Obtaining P
AE Using Standard Charts of K

A

In order to calculate PAE by using Eq. (8.19), one needs to follow these steps: 

1. Calculate i' [Eq. (8.16)].
2. Calculate {3' [Eq. (8.17)].
3. With known values of (/J, 8, i', and {3', calculate KA (from Tables 8.2, Table 8.3,

or other available charts).
4. Calculate PA as equal to tr H2 KA (KA from Step 3).
5. Calculate (1 - kv).
6. Calculate p [Eq. (8.20)].
7. Calculate

PAE = PA (i', /3')(1- kv )(p) 

For convenience, some typical values of p are plotted in Figure 8.5. 

* 

p 

() (deg) 

Figure 8.5 Variation of P and() 
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8 I Lateral Earth Pressure on Retaining Walls 

EXAMPLE 8.1 

Refer toFigure8.2. If f3 = 0°, i = O°, </) = 36°, 8 = 18°, H = 4.5 m, r = 17.6 kN/m3
,

kv = 0.2 , and kh = 0.3, determine the active force per unit length of the wall. 

SOLUTION: 

(} = tan- 1 ( 
kh ) = tan- 1 ( 

0·3 
) = 20.56°

l-k
v 

1-0.2

i' = i + (} = 0 + 20.56°
= 20.56°

/3' = /3 + (} = 0 + 20.56°
= 20.56°

K (i' /3') = 

cos2 (<j)- /3')
A , 

cos2 /3' cos( t5 + /3') [1 + { 
sin( 8 +</))sin(¢ - i') 

}
112 

]
2 

cos( 8 + /3') cos(/3' - i') 

cos2 (15.44) 
------------------

(cos2 20.56)(cos38.56)[1 + {
(sin54)(sinl5.44)

}
112

]

2 

(cos38.56)(cos0) 

= 0.583 

PA(i', /3') = � y H2 KA(i', /3')

= _!_ (17 .6)( 4.5)2 (0.583) = 103.89 kN/m 
2

* ( cos2 /3' 
) 

cos2 20.56 
p = 

cos(} cos2 f3 
= 

(cos20.56) (cosO) 
= 0.9363 

Hence, from Eq. (8.19), 
* 

PAE = PA (i', /3')(1- kv )(p) = (103.89)(1- 0.2)(0.9363) = 77.81 kN/m. 

ID EFFECT OF VARIOUS PARAMETERS ON THE VALUE

OF THE ACTIVE EARTH PRESSURE COEFFICIENT 

Parameters such as the angle of wall friction, angle of friction of soil, and 
slope of the backfill influence the magnitude of the active earth pressure coef
ficient KAE to vary ing degrees. The effect of each of these factors is considered 
briefly. 
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8.6 Graphical Construction for Determination of Active Force, PAE 

</J= 30°

/3=00 

i= 0°

kv = O 

--8=0 

-----
o= l </J

2 

-·-·o= I </J
3 

0.2........_�� ............ ����........._����.......__��______,
0.1 0.3 0.4 

Figure 8.6 Influence of wall friction, 8, on KAE 

A. Effect of Wall Friction Angle o

Figure 8.6 shows the variation of the active earth pressure coefficient KAE with 
kh for </J = 30° with 8 = 0°, </)/2, and t </J (kv = 0, f3 = 0°, and i = 0°), It can be seen 
from the plot that, for O < 8 < f </J, the effect of wall friction on the active earth 
pressure coefficient is rather small. 

B. Effect of Soil Friction Angle </J

Figure 8. 7 shows the plot of KAE cos8 (that is, the horizontal component of 
the active earth pressure coefficient) for a vertical retaining wall with horizon
tal backfill (/3 = 0° and i = 0°). In this plot, it has been assumed that 8 = t </J. 

From the plot, it may be seen that, for kv = 0 and 8 = t </J, KAE C</J = 30°) is about 35o/o 
higher than KAE(</J= 4o0). Hence, a small error in the assumption of the soil friction 
angle could lead to a large error in the estimation of PAE· 

C. Effect of Slope of the Backfill i

Figure 8.8 shows the variation of the value of KAE cos8 with i for a wall with 
f3 = 0, 8 = t </J, </J = 30°, and kv = 0. Note that the value of KAE cos8 sharply 
increases with the increase of the slope of the backfill. 

1111 GRAPHICAL CONSTRUCTION FOR DETERMINATION

OF ACTIVE FORCE, PAE 

Culmann (1875) developed a graphical method for determination of the active force 
PA [Eq. (8.1)] developed behind a retaining wall. A modified form of Culmann's 
graphical construction for determination of the active force PAE per unit length of 
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1.0 ,--------..-----.,.....-----�----.....------, 

i=0
° 

0.1 0.2 0.3 0.4 0.5 

Figure 8.7 Effect of soil friction angle, (/J, on KAE cos8 

a retaining wall has been proposed by Kapila (1962). In order to understand this, 
consider the force polygon for the wedge ABC shown in Figure 8.2. For conven
ience, this has been replotted in Figure 8.9a. The force polygon can be reduced to 
a force triangle with forces PAE, F, and W �(l-kv)2 + kl; (Figure 8.9b). Note that 
in Figure 8.9a, b, a is the angle that the failure wedge makes with the horizontal. 

The idea behind this graphical construction is to determine the maximum

value of PAE by considering several trial wedges. With references to Figure 8.9c, 
following are steps for the graphical construction: 
1. Draw line BE, which makes an angle (/J - e with horizontal.
2. Draw a line BD, which makes an angle 90° - /3 -8 - e with the line BE.

3. Draw BC1 , BC2 , BC3, •• • , which are the trial failure surface.
4. Determine kh and kv and then �(1-kv)2 + kl;
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8.6 Graphical Construction for Determination of Active Force, PAE 

� 0.6 

kv = O 

/3= oo 

</J= 30°

8= 1 ¢ 
3 

0.2����������������������� 

0 0.1 0.2 0.3 0.4 0.5 

Figure 8.8 Effect of backfill inclination, i, on KAE cos8 

5. Determine the weights Wi, U,S, W3 ,... of trial failure wedges ABC1 ,

ABC2 , ABC3 , •• • , respectively (per unit length at right angle to the cross sec
tion shown).

6. 

Note

Wi = (area of ABCi) x r x 1 
Wi = (area of ABC2 ) X yx 1 

• 
I I I 

Determine Wi , Wi , Wj . . .  , as 

Wi' = �(1- kv)2 
+ kl Wi 

w; = w; = �(1- kv)2 
+ kl Wi

7. Adopt a load scale.
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(W-kv W) 

(a) (b) 

Figure 8.9 Modified Culmann constructing 
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8.7 Laboratory Model Test Results for Active Earth Pressure Coefficient, KAE 

8. Using the load scale adopted in step 7, draw BFi = W/, BF; = w;, B� = w;, . . .
on the line BE.

9. Draw FiG1 , F;G2 , �G3 , • • •  , parallel to line BD. Note that BFiG1 is the force tri
angle for the trial wedge ABC1 smaller to that shown in Figure 8.9b. Similarly,
BF;G2 , B�G3 , • • •  , are the force triangles for the trial wedges ABC2 , ABC3 , • • • ,

respectively.
10. Join the points G1 , G2 , G3 , • • •  , by a smooth curve.
11. Draw a line HJ parallel to line BE. Let G be point of tangency.
12. Draw line GF parallel to BD.
13. Determine active force PAE as GF X (load scale).

1111 LABORATORY MODEL TEST RESULTS FOR ACTIVE

EARTH PRESSURE COEFFICIENT, KAE 

In the early stages of the development of the Mononobe-Okabe solution 
[Eq. (8.4)], several small-scale laboratory model test results relating to the deter
mination of the magnitude of lateral force on a rigid wall with dry granular 
backfill, and thus KAE, have been reported in the literature (e.g., Mononobe and 
Matsuo, 1929; Jacobsen, 1939). More recently, Sherif, Ishibashi, and Lee (1982), 
Sherif and Fang (1984), and Ishibashi and Fang (1987) have published results of 
lateral earth pressure measurement behind a heavily instrumented rigid retaining 
wall. For all the preceding tests, the height of the retaining wall was 1 m. The 
retaining wall was resting on a shaking table with a granular backfill. A sinusoi
dal input motion with a 3.5 Hz frequency and maximum acceleration up to 0.5 
g was applied to the shaking table during the experiments. The results of these 
tests are very instructive and will be summarized here. 

The nature of distribution of active earth pressure and thus the magnitude 
of the active force on a retaining wall is very much dependent on the nature of 
yielding of the wall itself Figure 8.10 shows the three possible modes of wall 
yielding for the development of an active state: 

a. Rotation about the bottom (Figure 8.10a)
b. Translation (Figure 8.1 Ob)

c. Rotation about the top (Figure 8.10c)

Model test results relating to each of the three modes of wall yielding are
described next. 

A. Rotation about the Bottom

Ishibashi and Fang (1987) measured the dynamic active earth pressure distri
bution behind the model rigid retaining wall of 1 m height (/3 = 0°) described 
in the first paragraph of this section. For these tests, dry sand was used as a 
backfill material. The surface of the backfill was kept horizontal (that is, i = O; 
Figure 8.2). The properties of the sand backfill were: 

Dry unit weight of compaction of the backfill: 15.94 -16.11 kN /m3
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Figure 8.10 Modes of wall rotation for active pressure 

Relative density of the backfill: 49.5 - 57.6o/o 

Angle of friction of the soil: 38.5 - 40.1°

For these tests, the model retaining wall was rotated about its bottom. The 
magnitude of kh was varied from O to about 0.6, and kv was equal to 0. From 
Eq. (8.4) with kv = 0, 

PAEKAE = 

l H22Y 
(8.21) 

Figure 8.11 shows the variation of the experimental values of KAE cos8 
obtained from the tests of Ishibashi and Fang (1987). Also plotted in Figure 8.11 
is the theoretical variation of KAE cos8 obtained from Eq. (8.5) with kv = 0, 
f3 = 0° , and i = 0°. In plotting this theoretical variation, it has been assumed that 
</> = 39.2° and 8 = <f>/2. The comparison between the Mononobe-Okabe theoreti
cal curve and the experimental curve shows that 

PAE(measured) � 1.23 to 1.43PAE(theory) 

B. Translation of the Wall

Dynamic active earth pressure measurement behind a vertical rigid model 
retaining wall undergoing translation was reported by Sherif, Ishibashi, and Lee 
(1982). The details of the test conditions are as follows: 

Retaining wall: 

Height= 1 m 

/3 = oo 
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(Ishibashi, and Fang, 1987) 

Mononobe-Okabe theory 

(</J= 39.2° ; 8=; </J)
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Figure 8.11 Wall rotation about the bottom for active pressure-comparison 
of theory with model test results 

Average properties of backfill (sand): 

Unit weight= 16.28 kN/m3

Angle of friction,¢= 40.9°

Angle of wall friction, 8 = 23.9°

Slope of the backfill, i = 0°

For these tests the magnitude of KAE cos8 was varied from Oto 0.5 and kv was 0. 
Figure 8.12 shows the experimental variation of KAE cos8 obtained from these 
model tests. Also shown in this figure is the variation of KAE cos8 obtained from 
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Figure 8.12 Translation of wall for active pressure-comparison of theory 
with model test results 

the Mononobe-Okabe theory [Eq. (8.5)]. Based on this plot it appears that the 
experimental values PAE are about 30o/o higher than those obtained from Eqs. (8.4) 
and (8.5). 

Sherif, Ishibashi, and Lee (1982) also developed an empirical relationship for 
the magnitude of wall translation for development of the active state, which can 
be given as 

Ll = H(7 - 0.13¢)10-4

where 
Ll = lateral translation of the wall 

H = height of the wall 

In Eq. (8.22), the value of (/J is in degrees. 

(8.22) 
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8.7 Laboratory Model Test Results for Active Earth Pressure Coefficient, KAE 

C. Rotation of the Wall about the Top

Sherif and Fang (1984) reported the dynamic earth pressure distribution behind 
a 1 m high rigid vertical retaining wall (/3 = 0°) undergoing rotation about its top. 
A sand with an average unit weight of 15.99 kN/m3 was used as a backfill. The 
surface of the backfill was horizontal (that is, i = 0° ). The nature of variation 
of the maximum active horizontal earth pressure distribution (PAE cos 8, where 
p = active earth pressure at a given depth) obtained from these tests is shown in 
Figure 8.13. Also plotted in this figure are the theoretical variations of PAE cos 8 
obtained from the Mononobe-Okabe solution (with f3 = 0° , i = 0 ,  and kv = 0) for 
various values of kh. From the comparison of the theoretical and experimental 
plots, the following general conclusions can be drawn. 

1. The nature of variation of dynamic earth pressure for wall rotation about
the top is very much different than that predicted by the Mononobe-Okabe
theory.

2. For a given value of kh ,

PAE cos8 = f (PAE cos 8)dy

where y = depth measured from the top of the wall. 

(8.23) 

3. For a given value of kh , the horizontal component of the lateral force, PAE cos 8,
calculated from the experimental curves by using Eq. (8.23), is about 15o/o to
20% higher than the predicted by the Mononobe-Okabe theory.

�E 
cos 8 (kPa)

2 4 6 8 10 
0

0 

ffi,:--::: .. �:-.. r;;;;:;;;;;::::::::::�F::::::::::::=--1----....;,:----1-7,----,-----1

'": ..
.. 

._, ..
\ ": .... "..

.. in dense sand 
\ .... ...... 

.. .... (Sherif and Fang, 1984) ' "" .. .. .. .... 
200 1------1...,_._........,_--,,...,.-----------::,,,,;c-----b,,,""'---------,,__--+----'----- </J = 39. 3 ° ----< 

' 
' ' 

'
' 
' 
' 
' 

Figure 8.13 Rotation of wall about the top for active pressure-comparison of 
theory with model test results (i = 0° , f3 = 0° , kv = 0) 
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BJ POINT OF APPLICATION OF THE RESULTANT

ACTIVE FORCE, PAE 

A. Rotation about the Bottom of the Wall

The original Mononobe-Okabe solution for the active force on retaining structures 
implied that the resultant force will act at a distance of t H measured from the bot
tom of the wall ( H = height of the wall) similar to that in the static case ( kh = kv = 0 ). 
However, all the laboratory tests that have been conducted so far indicate that the 
resultant pressure PAE acts at a distance H, which is somewhat greater than t H 
measured from the bottom of the wall. This is shown in Figure 8.14. 

Prakash and Basavanna ( 1969) have made a theoretical evaluation for 
determination of H. Based on the force-equilibrium analysis, their study shows 
that ii increases from t H for kh = 0 to about t H for kh = 0.3 (for (/) = 30°, 
8 = 7.5° , kv = 0, i = f3 = 0). For similar conditions, the moment-equilibrium anal
ysis gave a value of H = t H and kh = 0, which increases to a value of ii ::::::: H /1.9 
at kh = 0.3. 

For practical design considerations, Seed and Whitman (1969) have proposed 
the following procedure for determination of the line of action of PAE · 

1. Calculate PA [Eq. (8.1)];
2. Calculate PAE [Eq. (8.4)];
3. Calculate liPAE = PAE - PA. The term MAE is the incremental force due to

earthquake condition;

H 

. .. . · :  . . .. · -. . .

. : .. . _·:: . . . . .

. . : . . . . . 

Intensity of pressure-earthquake 

condition 

PAE 

Intensity of pressure-static 

condition 

Figure 8.14 Point of application of resultant active earth pressure 
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. · .. : :_ . ·  ... . 

. .. :_ . . .  : .
.
. .

Figure 8.15 
4. Assume that PA acts at a distance of t H from the bottom of the wall 

(Figure 8.15); 
5. Assume that MAE acts at a distance of 0.6H from the bottom of the wall 

(Figure 8.15); then 

H = (PA)GH) + (LV'AE)(0. 6H)
PAE 

B. Translation of the Wall

Sherif, Ishibashi, and Lee (1982) suggested that, for wall translation, the follow
ing procedure can be used to estimate the location of the line of action of the 
active force, PAE · 
1. Calculate PA [Eq. (8.1)]; 
2. Calculate PAE [Eq. (8.4 )]; 
3. Calculate 11PAE 

= PAE - PA; and 

4. Ref erring to Figure 8.16, calculate 
H 

= (PA ) (0.42H) + (11PAE ) (0.48H) 
PAE

C. Rotation about the Top of the Wall

For rotation of the wall about its top (Figure 8.17), His about 0.55H (Sherif and 
Fang, 1984 ). 
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H 

0.48H I 

Figure 8.16 

H 

H=0.55 H 

Figure 8.17 

EXAMPLE 8.2 

. . . . 
, ' ' 

§_

. . .
. 
: :_ .

.
. 

. . · . ·  

Ref erring to Example 8.1, determine the location of the line of action for PAE · 
Assume rotation of the wall about its bottom. 

SOLUTION: 

The value of PAE in Example 8.1 has been determined to be 77 .81 kN/m. 

1 2 PA =

2
rH KA
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8.9 Design of Gravity Retaining Walls Based on Limited Displacement 

For</>= 36°, 8 = 18°, KA = 0.236 [Eq. (8.2)]. Thus, 

PA
= _!_(17.6)( 4.5)2 (0.236) = 42.06 kN/m

2 

This acts at a distance equal to 4·5 = 1.5 m from the bottom of the wall. Again, 
3 

fl.PAE= 77.81- 42.06 = 35.75 kN/m 
The line of action of fl.PAE intersects the wall at a distance of 0.6H = 2.7 m 
measured from the bottom, so 

jj = 
(1.5) (42.06) + (2.7) (35.75)

= l.OS m
77.81 

1111 DESIGN OF GRAVITY RETAINING WALLS BASED

ON LIMITED DISPLACEMENT 

Richards and Elms (1979) have proposed a procedure for design of gravity retain
ing walls based on limited displacement. In this study, they have taken into consid
eration the wall inertia effect and concluded that there is some lateral movement 
of the wall even for mild earthquakes. In order to develop this procedure, consider 
a gravity retaining wall as shown in Figure 8.18, along with the forces acting on it 
during an earthquake. For stability, summing the forces in the vertical direction, 

(8.24) 
where N is the vertical component of the reaction at the base of the wall and Ww

is the weight of the wall. 
Similarly, summing the forces in the horizontal direction, 

(8.25) 

where Sis the horizontal component of the reaction at the base of the wall. At 
sliding, 

S = Ntan </>b 
where </>b is the soil-wall friction angle at the base of the wall . 

Substituting Eqs. (8.24) and (8.25) into Eq. (8.26), one obtains 
khWw + PAE cos(8 + /3) = [Ww (l -kv) + PAE sin(8 + /3)]tan</>b

or 
Ww [(l-kv )tan</>b -kh ] = PAE[cos (8 + [3)- sin (8 + /3)tan¢h ] 

W = PAE [ cos(8 + /3)-sin (8 + f3)tan</>b J 
w (1-kv )tan </>b -kh

(8.26) 

(8.27) 
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Figure 8.18 Derivation of Eq. (8.28) 

r 

(jJ 

From Eq. (8.4), PAE
= fyH2 (1-kv )KAE · Substitution of this equation into 

Eq. (8.27) yields 

1-y H2 KAE [ cos( 8 + /3)- sin( 8 + /3) tan </>b ]
w: = -=-2 ____________ _ 

w ( tan </>b -tan e) 

where tanO = kh l(I -kv ). 
It may be noted that, in Eq. (8.28), Ww is equal to infinity if 

tan </>b = tan e

(8.28) 

(8.29) 

This implies that infinite mass of the wall is required to prevent motion. 
The critical value of kh 

= kh(cr) can thus be given by relation 

or 

kh(cr) tan e = = tan </>bI-kv

kh(cr) = (1-kv )tan</)b

Equation (8.28) can also be written in the form 

(8.30) 
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where 

_ cos ( 8 + J3) - sin ( 8 + J3) tan </>b CIE 
- -----------

( 1 - kv ) ( tan </>b - tan</>) 

(8.31) 

(8.32) 

Figure 8.19 shows the variation of CIE with kh for various values of 
kv (</> = </>b = 35°, 8 = !</>, i = J3 = O). Also, Figure 8.20 shows the variation of C1E

2 
with kh for various values of wall friction angle, 8 (</> = </>b = 35°, i = J3 = 0, kv = 0). 

Note that Eq. (8.31) is for the limiting equilibrium condition for sliding 
with earthquake effects takes into consideration. For the static condition (i.e., 
kh = kv = 0), Eq. (8.31) becomes 

where W = Ww (for static condition) and 

Ci = 

cos (8 + /3)- sin (8 + /3) tan<j)b 
tan<j)b 

Thus, comparing Eqs. (8.31) and (8.33), we can write that 

Ww - = Fr� = Fw

where 
w 

KAE(l- kv ) 
Fr = = soil thrust factor 

KA 
D 

C1E 11. . f: r1 = - = wa inertia actor
C1 

(8.33) 

(8.34) 

(8.35) 

and Fw is a factor of safety applied to the weight of the wall to take into account 
the effect of soil pressure and wall inertia. Figure 8.21 shows a plot of Fr , F1 , and 
Fw for various values of kh (</> = </>b = 35°, 8 = f <j), kv = 0, J3 = i = 0). 

Richards and Elms (1979) have explained the importance of inertia factors 
given in Eq. (8.35). Referring to Figure 8.21, suppose that one neglects the 
wall inertia factor (which is not considered in the design procedure outlined in 
Sections 8.2 and 8.3; i.e.,� = 1). In such a case, 

Ww Fw
= Fr

= -
W 
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8 I Lateral Earth Pressure on Retaining Walls 

<l>b = </J= 350 

8= l._ </J 
2 

i = /3= 0°

11-----------+-----+------+-----------1 

0.1 0.2 0.4 0.5 0.6 

Figure 8.19 Effect of kv on the value of C1E (from Richards and Elms, 1979) 

Source: Richards, R. and and Elms, D.G. (1979). "Seismic Behavior of Gravity Retaining Walls," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT4, pp. 449-464. With 

permission from ASCE. 

For a value of Fw = 1.5, the critical horizontal acceleration is equal to 0.18. How
ever, if the wall inertia factor is considered, the critical horizontal acceleration 

corresponding to Fw = 1.5 is equal to 0.105. In other words, if a gravity retaining 
wall is designed such that Ww = l.5W, the wall will start to move laterally at a value 

of kh = 0.105. Based on the procedure described in Section 8.2, if Ww = 1.5 W, it is 
assumed that the wall will not move laterally until a value of kh = 0.18 is reached. 

These considerations show that, for no lateral movement, the weight of the 
wall has to be increased by a considerable amount over the static condition, 

which may prove to be very expensive. Thus, for actual design with reasonable 
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8.9 Design of Gravity Retaining Walls Based on Limited Displacement 
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Figure 8.20 Effect of wall friction on C1 E (from Richards and Elms, 1979) 

Source: Richards, R. and and Elms, D.G. (1979). "Seismic Behavior of Gravity Retaining Walls," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT4, pp. 449-464. With 

permission from ASCE. 

cost, one has to assume some lateral displacement of the wall will take place 
during an earthquake; the procedure for determination of the wall weight (Ww ) 
is then as follows: 

1. Determine an acceptable displacement d of the wall.
2. Determine a design value of kh from the equation

(8.36) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



8 I Lateral Earth Pressure on Retaining Walls 

� 
r.t. 

8 

� 
r:. 

� 6

</J = 'Pb = 35
° 

= 28 

k
v

= f3= i= O 

0.1 0.2 

F1 

I 

/ Fr

., 

0.4 0.5 0.6 

Figure 8.21 Variation of FT,�' and Fw (from Richards and Elms, 1979) 
Source: Richards, R. and and Elms, D.G. (1979). "Seismic Behavior of Gravity Retaining Walls," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT4, pp. 449-464. With 

permission from ASCE. 

where Aa and Av are effective acceleration coefficient and displacement dis in 
mm. The values of Aa and Av for a given region in the United States are given
by the Applied Technology Council (1978).

Equation (8.36) has been suggested by Richards and Elms (1979) and is 
based on study of Newmark (1965) and Franklin and Chang (1977). 

3. Using the above value of kh, and assuming kv = 0, determine the value of KAE·
4. Determine the weight of the wall Ww from Eq. (8.31).
5. Apply a factor of safety to Ww obtained in Step 4.

A slight modification of this design procedure was proposed by Nadim
and Whitman 1983). This modification is intended primarily to account for the 
amplification of the ground motion in the backfill. 

EXAMPLE 8.3 

Determine the weight of a retaining wall 4 m high (given f3 = 0, i = 0, 
y = 17.29 kN/m3, ch=¢= 34°, 8 = ±¢,Av

= 0.2, Aa = 0.2, factor of safety= 1.5) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



8.9 Design of Gravity Retaining Walls Based on Limited Displacement 

a. for static condition;
b. for zero displacement condition under earthquake loading ; and
c. for a displacement of 50.8 mm under earthquake loading.

SOLUTION: 

a. From Eq. (8.33),
1 2 C w=-rH KA 12 

From Table 8.2, KA
= 0.256 (for cp = 34° , 8 = 1.7°, i = 0, f3 = 0). 

_ cos( 8 + /3)- sin( 8 + f3)tan</>b _ cosl 7 - sinl 7 (tan34) 
�- ---------

tan(/Jb tan34 

Thus 
= 1.125 

W = _!_ (17.29)( 4 )2 (0.256)(1.125) = 39 .84 kN/m
2 

With a factor of safety of 1. 5, 

the weight of the wall is equal to (1.5)(39.84) = 59.76 kN/m. 
b. From Eq. (8.31),

Ww = [� yH2 (1- k,, )KAE Jc/E 
Assume kv = 0. 

_ cos( 8 + /3)- sin( 8 + f3)tan cpb C
IE ------------

( 1 -kv ) ( tan </>b -tan cp) 

tane = kh = 0·2 = 0.2· e = 11.31 °
1-kv 1 

' 

cos 1 7 - sin 17 ( tan 34) 
C1E = = 1.6 

tan34-0.2 
Again, from Eq. (8.5), 

_ cos2 (34- ll.31) 
�- 2 

cos(l 1.31)[cos(17 + 11.31)][1 + sin( 34 + l
(
7)sin(34-

)
l l.3l)

] cos 17 + 11.31 

= 0.393 

Ww = _!_(17.29)( 4)2(1- 0)(0.393)(1.6) = 86.98 kN/m 2 
With a safety factor of 1.5, the weight of wall= (86.98)(1.5) = 130.47kN/m. 
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8 I Lateral Earth Pressure on Retaining Walls 

c. From Eq. (8.36),

k = Aa [
5.08AJ 

]1/4 = 0.21 (5.08)(0.2)2

1
1/4 = 0.075

h Aad l (0.2)(50.8) 

tanO = kh = 0·075 = 0.075 
1-kv 1-0

or 
e = 4.29°

C
iE 

= 
cos 17-sin17(tan 34) 

= 
0.7591 

=1.27
tan 34 -0.075 0.5995 

Using Eq. (8.5) 

_ cos2 ( 34 -4.29) 
�- 2 

cos( 4.29)[cos( 17 + 4.29 )J[l+ sin( 34 + 

?
)sin( 34 t.29)

]cos 17+4.29 

=0.3 

Thus, with a factor of safety of 1. 5, 

Ww = (1.5) G) (17.29)(4)2 (0.3)(1.27) = 79.05 kN/m

rm HYDRODYNAMIC EFFECTS OF PORE WATER

The lateral earth pressure theory developed in the preceding sections of this 
chapter has been for retaining walls with dry soil backfills. However, for quay 
walls (Figure 8.22), the hydrodynamic effect of the water also has to be taken 
into consideration. This is usually done according to the Westergaard theory 
(1933) that was derived to obtain the dynamic water pressure on the face of a 
concrete dam. Based on this theory, the water pressure due to an earthquake at a 
depth y (Figure 8.22) may be expressed as 

7 
Pi = 

8 
khy whl/2 ylf2 (8.37) 

where Pi is the intensity of pressure on the seaward side, r w is the unit weight of 
water, and h is the total depth of water. Hence, the total dynamic water force on 
the seaward side per unit length of the wall [Picw)] can be obtained by integration as 

f f h 
7 7 

Picw) = Pidy = 
0 8

khy whl/2 ylf2dy =
12 

khy wh2 (8.38) 
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8.10 Hydrodynamic Effects of Pore Water 
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Figure 8.22 Hydrodynamic effects on a quay wall 

or 

The location of the resultant water pressure is 

y = _l_f \Pi dy)y = _1_(7 khrwh112)J
h

(y1!2)(y)dy
Picw) 0 Picw) 8 ° 

(8.39) 

Matsuo and O'Hara (1960) have suggested that the increase of the pore 
water pressure on the landward side is approximately 70o/o of that on the seaward 
side. Thus, 

(8.40) 

where p2 is the dynamic pore water pressure on the landward side at a depth y.
The total dynamic pore water force increase [Picw)] per unit length of the wall is 

(8.41) 
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8 I Lateral Earth Pressure on Retaining Walls 

During an earthquake, the force on the wall per unit length on the seaward 
side will be reduced by Pi(w) and that on the landward side will be increased by 
l'i(w)· Thus, the total increase of the force per unit length of the wall is equal to 

(8.42) 

EXAMPLE 8.4 

Refer to Figure 8.22. For the quay wall, h = IO m. Determine the total dynamic 
force increase due to water for kh = 0.2. 

SOLUTION: 

From Eq. (8.42) 

Pw = 0.9917 khy wh2

= 0.9917(0.2)(9.81)(10)2 
= 194.6 kN/m

1111 ACTIVE EARTH PRESSURE THEORY FOR c - </J BACKFILL

A. Analysis of Prakash and Saran (1966), and Saran and Prakash (1968)

The Mononobe-Okabe equation for estimating PAE for cohessionless backfill 
also can be extended to c-</) soil (Prakash and Saran, 1966; Saran and Prakash, 
1968). Figure 8.23 shows a retaining wall of height H with a horizontal c-</) soil 
as backfill. The depth of tensile crack that may develop in a c-</) soil is given as 

2c 
(8.43) Zo = 

rff. 

where 

Ka = tan2 ( 45- �J (8.44) 

Referring to Figure 8.23 , the forces acting on the soil wedge (per unit length 
of the wall) are as follows: 

a. The weight of the wedge ABCDE, W

b. Resultant of the shear and normal forces on the failure surface CD, F

c. Active force, PAE

d. Horizontal inertia force, khW
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8.11 Active Earth Pressure Theory for c - cf, Backfill 
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Figure 8.23 Trial failure wedge behind a retaining wall with C-</J backfill 

e. Cohesive force along CD, C = c(CD)
( Adhesive force along BC, C' = c(BC)

It is important to realize that the following two assumptions have been made: 

1. The vertical inertia force (kvW) has been taken to be zero.
2. The unit adhesion along the soil-wall interface (BC) has been taken to be

equal to the cohesion ( c) of the soil.

Considering these forces, we can show that 

(8.45) 

where 

N
' = cos17'sec/3 + cos(/Jseci

(S.46) ac sin( 17' + 8)

, [ ( n + 0. 5) ( tan f3 + tan i) + n2 tan f3 J [ cos ( i + </J) + kh sin ( i + </J) J 
Nar = 

( )
(8.47) 

in which 

sin 17' + 8 

r/'=/3+i+</J 

Zo n=--
H-zo 

(8.48) 

(8.49) 
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8 I Lateral Earth Pressure on Retaining Walls 

The values of N�e and N�
y 

can be determined by optimizing each coefficient 
separately. Thus, Eq. (8.45) gives the upper bound of PAE· 

For the static condition, kh = 0. Thus, 

PAE
= r(H - zo)2 Nay - c(H - zo)Nae (8.50) 

The relationships for Nae and Nay 
can be determined by substituting kh = 0 into 

Eqs. (8.46) and (8.47). Hence, 

N = N' = cos77'sec/3 + cos</)seci
ae ae sin( 77' + c5) 

N = N�
y = [(n + 0.5)( tanf3 + tani) + n2 tan/3][ cos(i + ¢)]

ay A sin( 77' + c5) 

(8.51) 

(8.52) 

The vanations of Nae , Nay 
and A with ¢> and 9 are shown in Figures 8.24 

through 8.27. 

4.5 

4.0 

-20
° = /3 
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.... r 
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u 
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u 
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o.. 2.0 
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/3= 50 
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/3= 20
° 
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¢(deg) 

Figure 8.24 Variation of Nae = N�e with¢> and /3 (Based on Prakash and 
Saran, 1966, and Saran and Prakash, 1968) 
Source: Based on Prakash, S., and Saran, S. (1966). "Static and Dynamic Earth Pressure Behind 

Retaining Walls," Proceedings, 3rd Symposium on Earthquake Engineering, Roorkee, India, Vol. 1, 

pp. 277-288. Saran, S., and Prakash, S. (1968). "Dimensionless Parameters for Static and Dynamic 

Earth Pressure for Retaining Walls," Indian Geotechnical Journal, Vol. 7, No. 3, pp. 295-310. 
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Figure 8.25 Variation of Nar 
with (/J and /3 (n = 0.2) (Based on Prakash and 

Saran, 1966, and Saran and Prakash, 1968) 

Source: Based on Prakash, S., and Saran, S. (1966). "Static and Dynamic Earth Pressure Behind 

Retaining Walls," Proceedings, 3rd Symposium on Earthquake Engineering, Roorkee, India, Vol. 1, 

pp. 277-288. Saran, S., and Prakash, S. (1968). "Dimensionless Parameters for Static and Dynamic 

Earth Pressure for Retaining Walls," Indian Geotechnical Journal, Vol. 7, No. 3, pp. 295-310. 
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Figure 8.26 Variation of Nar 
with (/J and /3 (n = 0) (Based on Prakash and 

Saran, 1966, and Saran and Prakash, 1968) 

Source: Based on Prakash, S., and Saran, S. (1966). "Static and Dynamic Earth Pressure Behind 

Retaining Walls," Proceedings, 3rd Symposium on Earthquake Engineering, Roorkee, India, Vol. 1, 

pp. 277-288. Saran, S., and Prakash, S. (1968). "Dimensionless Parameters for Static and Dynamic 

Earth Pressure for Retaining Walls," Indian Geotechnical Journal, Vol. 7, No. 3, pp. 295-310. 
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Figure 8.27 Variation of ;t with kh , </J and f3 (Based on Prakash and Saran, 

1966, and Saran and Prakash, 1968) 

Source: Based on Prakash, S., and Saran, S. (1966). "Static and Dynamic Earth Pressure Behind 
Retaining Walls," Proceedings, 3rd Symposium on Earthquake Engineering, Roorkee, India, 
Vol. 1, pp. 277-288. Saran, S., and Prakash, S. (1968). "Dimensionless Parameters for Static 
and Dynamic Earth Pressure for Retaining Walls," Indian Geotechnical Journal, Vol. 7, No. 3, 
pp. 295-310. 
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8.11 Active Earth Pressure Theory for c - cf, Backfill 

EXAMPLE 8.4 

For a retaining wall, the fallowing are given.
• H = 8.54 m • 

c = 10.06 kN/m2

• fJ = + 10° • y = 18.55 kN/m3

• (/J = 20° • kh = 0. l and kv = 0
Determine the magnitude of the active force, PAE·

SOLUTION: 

From Eq. (8.43),

2c 2c
Zo = = 

rff. ytan( 45 -�)

(2)(10.06) 
= l 55 

( 
20

) 
· m

(18.55)tan 45 -
2 

From Eq. [8.49]

Zo 
n=--

H-zo 

-1-·5-5-
= 0.22 � 0.2

8.54-1.55

From Eqs. (8.45), (8.51), and (8.52).

PAE = r(H -zo )2 (ANar )-c(H -zo )Nac 

For fJ = 10° , (/J = 20°, kh = 0.1, and n � 0.2 ,

Nae = l.60 (Figure 8.24)
Nar = 0.375 (Figure 8.25)

A= 1.17 (Figure 8.27)
Thus,

PAE = (18.55)(8.54-1.55)2 (1.17 X 0.375)-(10.06)(8.54-1.55)(1.60)
= 285.15 kN Im 

B. Analysis of Shukla, Gupta, and Sivakugan (2009)

Shukla et al. (2009) developed a procedure for estimation of PAE for a retaining
wall with a vertical back face and horizontal backfill with a c - </J (Figure 8.28a).
In Figure 8.28a, ABC is the trial failure wedge. The following assumptions have
been made in the analysis:

1. The effect of tensile crack is not taken into account. 
2. The friction and adhesion between the back face of the wall and the backfill

are neglected.
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Figure 8.28 Estimation of PAE with c - </J backfill: (a) trial failure wedge, 
(b) force polygon

Figure 8.28b shows the polygon for all the forces acting on the wedge ABC. The 
notations are similar to those shown in Figure 8.23. According to this analysis, 
the critical wedge angle a = ac for maximum value of PAE can be given as 

sin¢ sin(</)- 8)cos8 

sin¢ sin(</)- 8) + m sin2</J + + 4m2 cos2 </J + 2m cos¢ 

{sin</)cos 8 + sin(¢ -8)} 

0.5 

tanac 
= -----------------------

sin </J cos( </J - f3) + 2m cos2 </J

where 

c' cos 8 m=-----
yH(l- kv ) 

(8.53) 

(8.54) 
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8.11 Active Earth Pressure Theory for c - cf, Backfill 

For definition of(), see Eq. (8.6). 
Thus, the magnitude of PAE can be expressed as 

where 

PAE * 1
(1 k ) *

--= PAE = - - v KAEy - C KAEc 
yH2 2 

C 
c*=--

yH 

(Al ()) 
sin( </J -()) 

cos o/- -
-----

K -
tanac

AE -r cos ()( cos </J + tan ac sin </J)

K _ cos </J (1 + tan2 ac ) 

AEc 

-
tanac (cos </J + tanac sin </J) 

(8.55) 

(8.56) 

(8.57) 

(8.58) 

F igure 8.29 gives plots of P1E against </J for various values of c* and kh (kv = 0). 

* 

�E 

-0.1 .__ _ __,_ __ __,_ __ ___...__ __ ....._ __ ....._ __ ...__ __ _..__ __ .......__ __ _, 
0 5 10 15 20 25 

¢(deg) 

(a) 

30 35 40 45 

Figure 8.29 Plot of P;E vs. </J for various values of c*: (a) kh = 0.1, (b) kh = 0.2, 
(c) kh = 0.3, (d) kh = 0.4 (Note: kv = 0)
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8 I Lateral Earth Pressure on Retaining Walls 
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Figure 8.29 ( Continued) 
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8.11 Active Earth Pressure Theory for c - cf, Backfill 

* 

�E 0.3 1----+------+----+---__..,__ __ �----------

5 10 15 

Figure 8.29 ( Continued) 

EXAMPLE 8.5 

20 25 
¢(deg) 

(d) 

30 35 40 

For a retaining wall with a vertical backfill, the following are given. 
• H=8.54 m
• </J = 20°

• y = 18.55 kN/m3

• kh = 0 .1, kv = 0
• c = 7.9 kN/m2

Determine the magnitude of the active force, PAE

SOLUTION: 

From Eq. (8.56), 

c* = _c_ - 7 ·9 
= 0.0499 :::=: 0.05 

r H (18.55) (8.54) 
</J = 20°

45 

From Figure 8.29a, for </J = 20° and c* = 0.05, the value of P1E :=:=: 0.21. Hence 

PAE
= P1ErH2 = (0.21)(18.55)(8.54)2 = 284.1 kN/m
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8 I Lateral Earth Pressure on Retaining Walls 

EID DYNAMIC PASSIVE FORCE ON RETAINING WALL

(GRANULAR SOIL) 

Figure 8.30 shows a retaining wall having a granular soil as the backfill material. 
If the wall is pushed toward the soil mass, at a certain stage failure in the soil will 
occur along a plane BC. At failure the force, PPE , per unit length of the retaining 
wall is the dynamic passive force. The force per unit length of the wall that needs 
to be considered for equilibrium of the soil wedge is shown in Figure 8.30. The 
notations W, </), 8, y, kh, and kv have the same meaning as described in Figure 8.2 
(Section 8.2). Using the basic assumptions for the soil given in Section 8.2, the 
passive force ( PPE ) may also be derived as (Kapila, 1962) 

PPE = .!.yH2 (l- kv )KPE (8.59) 
2 

where 

K _ 
cos2 ( ¢ + f3 - ())

PE -
2 [ { sin(¢+8)sin(¢+i-8) 

}
1'2 ]

2

and 

cosOcos f3cos(8 -f3 + 8) l-
cos(i- /3)cos(b _ /3 + e) 

() = tan- 1 [kh /(l - kv )] 

(8.60) 

Note that Eq. (8.59) has been derived for dry cohesionless backfill. Kapila 
has also developed a graphical procedure for determination of PPE · 

H 

Figure 8.30 Passive force, PPE , on a retaining wall 

F 

C 

Soil unit weight = y 

Soil friction angle = ¢> 

c=O 
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8.12 Dynamic Passive Force on Retaining Wall (Granular Soil) 

Figure 8.31 shows the variation of KPE for various values of soil friction 
angle(/) and kh (with kv = i = /3 = 8 = 0). From the figure it can be seen that, with 
other parameters remaining the same, the magnitude of KPE increases with the 
increase of soil friction angle (/). 

Figure 8.32 shows the influence of the backfill slope angle of KPE· Other 
factors remaining constant, the magnitude of KPE increases with increase of i. 

A more advanced analysis based on kinematical method of limit analysis 
on seismic passive earth pressure coefficients can be found in Soubra (2000). 
According to this solution, the passive force can be expressed [Eq. (8.59)]. The 
variation of KPE for i = 0, f3 = 0, kv = 0, and c = 0 obtained by Soubra (2000) has 
been compiled and given in Table 8.9. 

1---------+-------+-----+----t 

0.1 

k
v

= O 

i= 0
°

/3= oo 

8=0
° 

0.2 0.3 0.4 0.5 

Figure 8.31 Variation of KPE with soil friction angle and kh (from Davies, 
Richards, and Chen, 1986) 

Source: Davies, T.G., Richards, R., and Chen, K.H. (1986). "Passive Pressure during Seismic 

Loading," Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT4, pp. 479-484. With 

permission from ASCE. 
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8 I Lateral Earth Pressure on Retaining Walls 

8 

i= 20
°

21-----+------+-----+------+-----1 

<P = 35
°

kv = 8= /3 = 0

0----�----------------

0 0.1 0.2 0.3 0.4 0.5 

Figure 8.32 Influence of backfill s lope on KPE (from Davies, Richards, and 
Chen, 1986) 

Source: Davies, T.G., Richards, R., and Chen, K.H. (1986). "Passive Pressure during Seismic 

Loading," Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT4, pp. 479-484. With 

permission from ASCE. 

Table 8.9 Variation of KPE for i = 0, f3 = 0, and k
v 

= 0 (compiled from 
Soubra, 2000) 

</>(deg) 

8/</> kh 25 30 35 40 45 

0 0 2.46 3.0 3.69 4.6 5.83 

0.1 2.30 3.82 3.49 4.38 5.58 

0.2 2.12 2.63 3.29 4.15 5.33 

0.3 1.91 2.42 3.06 3.91 5.07 

1/3 0 3.08 4.05 5.48 7.70 11.35 

0.1 2.84 3.77 5.14 7.27 10.78 

0.2 2.58 3.47 4.78 6.81 10.19 
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8.12 Dynamic Passive Force on Retaining Wall (Granular Soil) 

<f,(deg) 

o/<f> kh 25 30 35 40 45 

0.3 2.28 3.13 4.39 6.33 9.57 

1/2 0 3.43 4.69 6.67 9.99 15.98 

0.1 3.15 4.35 6.24 9.40 15.15 

0.2 2.85 3.99 5.78 8.79 14.29 

0.3 2.5 3.59 5.19 8.15 13.40 

2/3 0 3.79 5.40 8.06 12.83 22.22 

0.1 3.48 5.00 7.53 12.08 21.06 

0.2 3.14 4.57 6.96 11.28 19.86 

0.3 2.74 4.10 6.35 10.44 18.61 

Source: Based on data from Soubra, A.-H. (2000). "Static and Seismic Passive Earth Pressure 

Coefficients on Rigid Retaining Structures," Canadian Geotechnical Journal, Vol. 37, pp. 463-478. 

EXAMPLE 8.6 

Consider a retaining wall with the following: 

H=4m 

/3=0 

i=O 

</> = 30°

y = 17 kN/m3

8/¢ = 2/3 
kh = 0.2 
kv =0 

Estimate the passive force PPE

a. Using Eqs. (8.59) and (8.60)
b. Using Eq. (8.59) and Tab le 8.9

SOLUTION: 

a. B=tan- 1( kh 

J= tan-1( 0·2 
J=ll.3° 

l- kv l -0 

8/¢ = 2/3; 8 = 2/3(30) = 20°. 

Sub stituting i = 0, f3 = 0, </> = 30°, and 8 = 20° in Eq. (8.60), we ob tain 
KPE = 4.975. Eq. (8.59): 

1 1 
PAE

= 

2 
y H

2
(l - kv)KPE = 

2 
(17)( 4)2(1- 0)( 4.975) = 676.6 kN/m

b. From Tab le 8.9, for kh = 0.2, 8/¢ = 2/3, and¢= 30°, the value of KPE = 4.75.

PPE = _!_(17)( 4)2(1- 0)( 4.57) = 621.52 kN/m2 
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8 I Lateral Earth Pressure on Retaining Walls 

EJD DYNAMIC PASSIVE FORCE WITH C-</J SOIL BACKFILL

Shukla, Sivakugan, and Das (2011) developed an expression for passive force 
on a retaining wall ( A1A2 ) of height H with a vertical back face and horizontal 
backfill with c-<p soil with a surcharge of q/unit area as shown in Figure 8.33a. 
In this analysis, the friction and adhesion between the back face of the wall and 
the backfill were neglected. Figures 8.33b and 8.33c show the force polygons 

H 

' 

' 

' 

' 

N ', 
' 

' 

---B---•1 

' 

' 

' 

' 

' 

' 

(1 ± kv)qB 

(a) 

r 

¢ 

C 

' / ' / 
' / 
' / 

(b) 

' / 
' / 
' / 
' / 
' / ' / '

/ T'
,/'v/ 

'./ 

Figure 8.33 (a) Trial failure wedge; (b) force polygon when the vertical seismic 
inertial force acts downward; and ( c) force polygon when the vertical seismic 
inertial force acts vertically upward 
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8.13 Dynamic Passive Force with C - cf, Soil Backfill 
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Figure 8.33 ( Continued) 
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when the seismic inertial force acts vertically downwards and upwards, respec
tively. Note that N and Tare the normal and tangential component forces due to 
friction along the trial failure surf ace A2A3 which makes an angle a with the hor
izontal, and Fis the resultant of N and T. Also, C = (c)(A2A3 ) and W = weight 
of the trial wedge per unit length of the wall= tr HB. 

According to this solution, 

where 

(cos¢ -8) + sin(¢ -8) 

K _ tanac
PEy -

( 
. 

) 8 cos¢- s1n¢tanac cos 

K _ (1 + tan2 ac )cos¢ 
PEC -

(cos¢- sin¢tanac )tanac

(8.61) 

(8.62) 

(8.63) 

ac = critical value of wedge inclination, a 

= tan- 1

-[sin¢sin(q, - 8) + msin2¢] 

+�sin¢sin(¢ -8)cos8 + 4m2 cos2 ¢ + 2mcos¢[sin¢cos8 + sin(¢- 8)]

sin¢cos(q,- 8) + 2mcos2 ¢ 

ccos8 
m=--------

(1 + kv)(2q + yH) 

(8.64) 

(8.65) 
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8 I Lateral Earth Pressure on Retaining Walls 

and 

() = tan -1 ( 
kh J 

1-kv 

(8.66) 

Figures 8.34 and 8.35, respectively, show the variation of ic and PPE for a specific 
case (H = 4 m, (/) = 26°, c = 10 kPa, y = 15 kN/m3

, kh = 0.3). 
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Figure 8.34 Variation of a = ac with surcharge q [Eq. (8.64)] 
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Figure 8.35 Variation of PPE with q [Eq. (8.61)] 
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Problems 

PROBLEMS 

8.1 A retaining wall is 5.5 m high with a vertical back (/3 = 0° ). It has a hor
izontal cohesionless soil (dry) as backfill. Given: 

Unit weight of soil = 15 kN/m3

Angle of friction ¢ = 30°

kh = 0. 3 5 kv = 0 8 = 15°

Determine the active force PAE per unit length of the retaining wall. 

8.2 Refer to Problem 8.1. Determine the location of the point of intersec
tion of the resultant force PAE with the back face of the retaining wall. 
Assume the wall (a) rotates about the bottom, and (b) translates. 

8.3 Refer to Figure 8.2. Given: 

H=3m ¢=40°

/3 = 10° 8 =13°

i = 10°
r = 15.72 kN/m3

kh = 0.3 

kv = 0.1 

Determine the active forcer per unit length PAE and the location of the 
resultant. Assume that the wall is rotating about its bottom. 

8.4 Refer to Problem 8.3. Where would be the location of the resultant if 
the wall is rotating about its top? 

8.5 Redo Problem 8.1 using the modified Culmann graphical solution 
procedure. 

8.6 For a retaining wall with vertical back face and horizontal backfill, 
the following are given; H = 6 m, c = 12 kPa, ¢ = 25°, y = 17.8 kN/m3

,

kh = 0.2, and kv = 0. Estimate the active force PAE per unit length of the 
wall. Use Eq. (8.45) and ignore the tensile crack. 

8.7 Solve Problem 8.6 using Eq. (8.55). 

8.8 For the retaining wall and the backfill given in Problem 8.1, determine the 
passive force PPE per unit length of the wall. Use Eqs. (8.59) and (8.60). 

8.9 Solve Problem 8.8 using Eq. (8.59) and Table 8.9. 

8.10 For a retaining wall and the backfill given in Problem 8.3, determine the 
passive force PPE per unit length. Use Egs. (8.59) and (8.60). 

8.11 Consider a 3.6 m high gravity vertical retaining wall (/3 = 0°) with a 
horizontal backfill (i = 0° ). 
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8 I Lateral Earth Pressure on Retaining Walls 

Given for the soil are cp = 32°, r = 19.5 kN/m3 and 8 = 0. 
a. Calculate PAE and the location of resultant with kv = 0.1 and

kh
= 0.15.

b. For the results of (a), what should be the weight of the wall per
meter length for no lateral movement? The factor of safety against
sliding is 1.4.

c. What should be the weight of the wall for an allowable lateral dis
placement of 25 mm? Given Av = Aa = 0.15; the factor of safety
against sliding is 1.4.
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Compressibility of Soils 

under Dynamic Loads 

ID INTRODUCTION

Permanent settlements under vibratory machine foundations can generally be 
placed under two categories: 

1. Elastic and consolidation settlement due to the static weight
2. Settlement due to vibratory compaction of the foundation soil

Permanent settlement in soils can also be induced due to the vibration
caused by an earthquake. The elastic and consolidation settlement due to static 
loads is not discussed here since the conventional methods of calculation can be 
found in most standard soil mechanics texts. In this chapter, the present available 
methods to evaluate permanent settlement due to dynamic loading conditions 
are presented. 

ID COMPACTION OF GRANULAR SOILS: EFFECT OF

VERTICAL STRESS AND VERTICAL ACCELERATION 

The fact that granular soils can be compacted by vibration is well known. Dry 

granular soils are likely to exhibit more compaction due to vibration as com
pared to moist soils. This is because of the surface tension effect in moist soils, 
which offers a resistance for the soil particles to roll and slide and arrange them
selves into a denser state. 

Laboratory studies have been made in the past to evaluate the effect of cyclic 
controlled vertical stress at low frequencies, i.e., at low acceleration levels on 
confined granular soils (D' Appolonia, 1970). Such laboratory tests can be per
formed by taking a granular soil specimen in a mold, as shown in Figure 9 .1 a. A 
confining vertical air pressure a z is first applied to the specimen, after which a 
vertical dynamic stress of amplitude ad is applied repeatedly. 

The permanent compressions of the specimen are recorded after the elapse 
of several cycles of dynamic stress application. Also, several investigations on 
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9.2 Compaction of Granular Soils: Effect of Vertical Stress and Vertical Acceleration 
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Figure 9.1 Compaction of granular soil by (a) controlled vertical stress; and 
(b) controlled vertical acceleration

confined dry granular soils have been conducted (e.g., see D'Appolonia and 
D'Appolonia, 1967; Ortigosa and Whitman, 1968) in which a controlled vertical 
acceleration is imposed on the specimen, which produces small dynamic stress 
changes. For these tests, the specimen is placed in a mold fixed to a vibrating table 
(Figure 9.1 b ). Then vertical confining air pressure er z is applied to the specimen. 
After that, the specimen is subjected to vertical vibration for a period of time. 

Note that, for vertical vibration, 

z = Az sin mt 

where Az is the amplitude of the vertical vibration. The magnitude of the peak 

acceleration is equal to Azm
2 = Az (2nf)2

• Thus, the peak acceleration is con
trolled by the amplitude of displacement and the frequency of vibration. For con

stant peak acceleration of vibration, the drive mechanism has to be adjusted for 
Az and f The vertical compression of the specimen can be determined at the end 
of a test. 

Thus the first type of test described above is run with repeated stresses with 
negligible acceleration; the second type is for repeated acceleration with small 

dynamic stress on soils. 

Figure 9 .2 shows the results of a number of tests conducted on a dune sand 
for controlled vertical stress condition. For all tests, the sand specimens were 
compacted to an initial relative density of about 60o/o. 

The frequencies of load application were in a range of 1.8-6 Hz. Along the 
ordinate are plotted the vertical strain, which is equal to fiHIH (where His the 
initial height of the specimen and fiH is the vertical compression of the specimen 
after a given number of load cycles). It may be seen that, for a given value of er d / er z,

fiH 
-cxlogN
H
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9 I Compressibility of Soils under Dynamic Loads 
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Figure 9.2 Compression of a dune sand under controlled vertical stress 
condition (from D' Appolonia, 1970) 

Source: D'Appolonia, E. (1970). "Dynamic Loadings," Journal of the Soil Mechanics and 

Foundations Division, ASCE, Vol. 96, No. SMI, pp. 49-72. With permission from ASCE. 

where N is the number of load cycle applications. Also note that, for a given num

ber of load cycles, the vertical strain increases with increasing values of CJ d /a z·

Figure 9.3 shows the nature of the results obtained from controlled vertical 
acceleration tests on dry sand by Ortigosa and Whitman (1968). Note that, even 

at zero confining pressure, no vertical strain is induced up to a peak acceleration 
of about lg (1 X acceleration due to gravity ). Similar test results of D' Appolonia 
(1970) are shown in Figure 9 .4, for which a z = 0. The terminal dry unit weight 

shown in Figure 9 .4 is the unit weight of sand at the end of the test. 
Krizek and Fernandez (1971) also conducted several laboratory tests with 

controlled vertical acceleration to study the densification of damp clayey sand. 
Tests were conducted with air-dry and damp specimens of Ottawa sand, grun

dite, and three mixtures of Ottawa sand and grundite: 90o/o-l 0%, 80o/o-20%, 
70o/o-30%. Table 9.1 gives the details of the specimens used for the tests. 

For conducting the tests, approximately 0.017 m3 of soil samples-air dry 
and moist-were placed in a loose condition in a cylindrical mold 457 mm high 

and 305 mm in diameter. They were subjected to vertical vibrations for a period 
of time under various vertical pressures ( a z). The range of time for vibratory 

compaction for the specimens was varied. Maximum vertical accelerations up to 
a value of about 6 g were used. 
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Figure 9.4 Correlation between terminal unit weight and peak vertical 

acceleration for a dune sand (redrawn from D' Appolonia, 1970) 

Source: D'Appolonia, E. (1970). "Dynamic Loadings," Journal of the Soil Mechanics and 

Foundations Division, ASCE, Vol . 96, No. SMl, pp. 49-72. With permission from ASCE. 
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9 I Compressibility of Soils under Dynamic Loads 

Table 9.1 Details of the Specimens Used in the Tests by Krizek and Fernandez (1971) 

Moisture content Modified Proctor Optimum moisture 

Air dry Damp dry unit weight content,modified 

(%) (%) 
(kN/m3 ) Proctor test ( % ) Soil Percent of mix 

Ottawa sand 

Grundite 

Mix-10 90% Ottawa sand 
+ 10% grundite

0.6 

2.42 

0.26 

4.4 ± 0.5 16.92 11.0 

Not tested 16.00 18.5 

5±0.5 17.99 8.0 

Mix-20 80% Ottawa sand 
+ 20% grundite

0.51 4.5 ± 0.5 18.96 9.0 

Mix-30 70% Ottawa sand 0.72 5 ± 0.3 19.49 9.5 
+ 30% grundite

Source: Based on Krizek, R. J., and Fernandez, J. J. (1971). "Vibratory Densification of Damp Clayey 

Sands," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM8, pp. 1069-1079. 

Figure 9.5 shows the time rate of vibratory compaction of air-dry and moist 
sand-grundite mixtures. It needs to be pointed out that very few tests were con
ducted for amax/ g < 1 (amax = peak acceleration). However, from this study the 
following general conclusions may be drawn: 

1. Significant vibratory densification does not occur with peak acceleration
levels of less than 1 g.

2. The terminal vibratory dry unit weight of air-dry soils slightly decreases for
amax / g > 2. This is true only for zero confining pressure ( a z = 0).

3. An increase of the clay percentage in soils has a tendency to reduce

Yd ( tennin - vibrat) /rd ( modif max Proctor)·
4. Increase of moisture content has a significant influence in reducing

Yd ( tennin - vibrat) /rd ( modif max Proctor)·

Ill SETTLEMENT OF STRIP FOUNDATION

ON GRANULAR SOIL UNDER THE EFFECT 

OF CONTROLLED CYCLIC VERTICAL STRESS 

In Section 9.2, some laboratory experimental observations of settlement of lat
erally confined sand specimens were presented. In these cases, the loads have 
been applied over the full surface area. However, in the field, the load covers 
only a small area, and settlement in these cases includes those caused by the 
induced shear strains. In the case of foundations, the shear strain increase with 
the increase of CJ d / qu (where CJ d is the amplitude of dynamic load and qu is the 
ultimate bearing capacity). In this section, some developments on settlement of 
strip footings under the effect of controlled cycling vertical stress applied at low

frequencies (i.e., negligible acceleration) are discussed. 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



,....._ 
M 

� .,_.,
.......c::: 
bl) ..... 
(I) 

� 
..... 
·2
;:::s

>.� 
"O
-

i::.....
s� 
(I) 

t'"" 

,....._ 
M 

s 

.......c::: 
bl) ..... 
(I) 

� 
..... 

;:::s 

>. � 
"O 
-

i::.....

(I) 

t'"" 

18.8

18.2

17.6

17.0

16.4

.
.I Air-dry rrux-10 I 

(90% sand+ 10% grundite)
Uz = 22.5 kPa

amax All values of--\
I gl 

\ 

15.80-
/ 

15.2 0

15.2

14.6

14.0

13.4

12.8

1 

Moist mix-1 o'

2 3
Time of vibration (min)

(a) 

(90% sand + 10% grundite)
Moisture content= 4.5%
O"

z 
= 22.5 kPa

.,.-

4

\ 
\ 

I 
amax All values of g �

12.2
0 1 2 3 

Time of vibration (min)
(b) 

5

4

Figure 9.5 Time rate of vibratory compaction for air-dry and moist sand
grundite mixtures (redrawn from Krizek and Fernandez, 1971) 
Source: Krizek, R.J. and Fernandez, J.J. (1971). "Vibratory Densification of Damp Clayey

Sands," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM8, 

pp. 1069-1079. With permission from ASCE. 
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9 I Compressibility of Soils under Dynamic Loads 

Raymond and Komos (1978) conducted laboratory model tests with strip 
foundations with widths of 75 mm and 228 mm resting on 20-30 Ottawa sand in a 
large box. The cyclic loads on model strip foundations were applied by a Bellofram 
loading piston activated by an air pressure system. The loadings approximated a 
rectangular wave from as shown in Figure 9.6a with a frequency of 1 Hz. The set
tlement of the foundations was measured by a dial gauge together with a DVDT 
activating a strip chart recorder. For conducting the tests, the ultimate static 
bearing capacities ( qu ) were first experimentally determined. The foundations 
were then subjected to various magnitudes of cyclic load (ad/ q u = l 3. 5o/o - 90%, 
where ad = Q0 / A, and A is the area of the model footing). The load settlement 
relationships obtained from the tests for the 228 mm foundations are shown in 
Figure 9.6b. In this figure, SN is the permanent settlement of the foundation and 
N is the number of cycles of load application. Such plots may be given by an 
empirical relation as 

SN 
-- = a+bSN

logN 

where a and b are two constants. 

(9.1) 

The experimental values of a and b for these two foundations may be approx
imated by the following equations. 

For 7 5 mm wide foundation: 

a = -0.0811 + 0.0115F

b = 0.12420 + 0.00127 F 

For 228 mm wide foundation: 

a = -0.1053 + 0.0421F

b = 0.0812 + 0.0031F 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

where F =ad/ qu and SN is measured in millimeters. Equations (9 .1 )-(9 .5) are 
valid up to a load cycle N = l 05

•

Figure 9.7 shows the experimental results of the variation of ad with logN 
for various values of SN . For a given value of SN , the plot of ad versus logN 
is approximately linear up to a value of ad � (l/4)qu . For ad < (l/4)qu , the 
slope of ad versus log N becomes smaller and the response tends toward elastic 
conditions. 

From Eqs. (9.2)-(9.5), it may be seen that,for a given soil, the parameters a 
and bare functions of the width of the foundation B. Thus, Eqs. (9.2) and (9.4) 
have been combined by Raymond and Ko mos to the form 

a = -0.15125 + 0.0000693B1 . 1 8 (F + 6.09) (9.6) 
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9.3 Settlement of Strip Foundation on Granular Soil under the Effect of Controlled 
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Figure 9.6 Plastic deformation due to repeated loading in plane strain case 

(redrawn from Raymond and Komos, 1978) 

Source: Raymond, G.P. and Komos, F.E. (1978). "Repeated Loading test of a Model Plane Strain 

Footing," Canadian Geotechnical Journal, Vol. 15, No. 2, pp. 190-201. 
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9 I Compressibility of Soils under Dynamic Loads 
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Figure 9. 7 Variation of CJ d with log N for various values of permanent 
settlement (redrawn from Raymond and Komos, 1978) 

Source: Raymond, G.P. and Komos, F.E. (1978). "Repeated Loading tes t of a Model Plane Strain 

Footing," Canadian Geotechnical Journal, Vol. 15, No. 2, pp. 190-201. 

where Bis the width of the foundations. Similarly, Eqs. (9.3) and (9.5) can be 
combined as 

b = 0.153579 + 0.0000363B0
·
82i(F - 23.1) (9.7) 

Equations (9.6) and (9.7) are valid for only two different sizes of foundation 
and for one soil. The general form of the equations for all sizes of foundations 
and all soils can be written as 

and 

b = bi + b2Bo.s2i F - b3Bo.s2i

where ai , a2, a3 , bi , b2, b3 are parameters for a given soil . However, 

F= CJd 

and 

qu

qu = .!.y BN
r 

(for surface foundation )
2 

(9.8) 

(9.9) 

(9.10) 
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9.4 Settlement of Machine Foundation on Granular Soils Subjected to Vertical Vibration 

where N
y 

is the static bearing capacity factor (Chapter 6) and r is the unit 
weight of soil. 
Thus, 

(Jd F=---
(l/2)yBN

y

Substitution of Eq. (9.11) into Eqs. (9.8) and (9.9) yields 

and 

where 

and B is in millimeters. 

a2 
a4

= ---
(1/2)y Ny

b4 =
/Ji 

(1/2)r N
y

(9.11) 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

If the values of a1 , a3 , a4, b1 , b3 , b4, which are the plastic properties of given 
soil at a given density of compaction, can be determined by laboratory test
ing, the settlement of a given strip foundation can be determined by combining 
Eqs. (9.1), (9.12), and (9.13). It needs to be pointed out that, for given values 
of ad and N, the value of SN decreases with the increase of the width of the 
foundation. This fact is demonstrated in Figure 9. 8 for five different foundations. 

Analysis of this type may be used in the estimation of the settlement of rail
road ties subjected to dynamic loads due to the movement of trains. 

IIJ SETTLEMENT OF MACHINE FOUNDATION

ON GRANULAR SOILS SUBJECTED TO VERTICAL 

VIBRATION 

For machine foundation subjected to vertical vibrations, many investigators 
believe that the peak acceleration is the main controlling parameter for the settle
ment of the foundation. Depending on the relative density of granular soils, the 
solid particles come to an equilibrium condition under a given peak acceleration 
level. This threshold acceleration level must be exceeded before additional densi
fication can take place. 

The general nature of the settlement-time relationship for a foundation is shown 
in Figure 9.9. Note that in Figure 9.9, Az is the amplitude of the foundation vibra
tion and W is the weight of the foundation. The foundation settlement gradually 
increases with time and reaches a maximum value, beyond which it remains constant. 
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9.4 Settlement of Machine Foundation on Granular Soils Subjected to Vertical Vibration 

Brumund and Leonards (1972) have studied the settlement of circular foun
dations resting on sand subjected to vertical excitation by means of laboratory 
model tests. According to them, the energy per cycle of vibration imparted to the 
soil by the foundation can be used as the parameter for determination of settle
ment of foundations. 

The model tests of Brumund and Leonards were conducted in a 0.057 m3

container. They used 20--30 Ottawa sand, compacted to a relative density of 70o/o. 
The model foundation used for the tests was 101.6 mm in diameter. The static 
ultimate bearing capacity was first experimentally determined before beginning 
the dynamic tests. The duration of vibration of the model foundation was cho
sen to be 20 min for all tests. Figure 9.10 shows the plot of the experimental 
results of settlement S against the peak acceleration for a constant frequency 
of vibration. For a given foundation weight W, the settlement increases linearly 
with the peak acceleration level. However, for a given frequency of vibration and 
peak acceleration level, the settlement increases with the increase of W.

Figure 9.11 shows a plot of settlement S against the energy transmitted per 
cycle to the soil by the foundation. 
The data include the following: 

1. A frequency range of 14-59.3 Hz (both above and below the resonant
frequency) 

2. A range in static pressure of 0.27-0.55 X static ultimate bearing capacity qu ,
The static pressure q can be defined as

w 
q=-

A 

where A is the area of the foundation. 

(9.16) 

3. A range in maximum downward dynamic force of 0.3W - W. The maximum
downward dynamic force may theoretically be obtained from Eq. (2.90) as

where 

Fdynam( max) = Az � k2 + ( CO) )2

Az = amplitude of foundation vibration 
. LI-Gro 

k = spnng constant= (see Chapter 5) 
l-µ

c = ( 3.4 Jra2 JGp (see chapter 5)
l-µ

G = shear modulus of soil 

r0 = radius of foundation 
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9 I Compressibility of Soils under Dynamic Loads 
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Figure 9.10 Plot of settlement versus peak acceleration for model foundation 
at a frequency of 20 Hz (from Brumund and Leonards, 1972) 
Source: Brumund, WF., and Leonards, G.A. (1972). "Subsidence of Sand Due to Surface 

Vibration," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 98, No. SMl, pp. 27-42. 

With permission from ASCE. 

µ = Poisson's ratio of soil 

p = density of soil 

m = 2rcf (f = frequency of vibration) 

The equation for the determination of energy transmitted to the soil per cycle 
(Er,) may be obtained as follows: 

Er, = f Fdz = FavAz (9.17) 
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9.4 Settlement of Machine Foundation on Granular Soils Subjected to Vertical Vibration 
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Figure 9.11 Plot of settlement versus transmitted energy per cycle (from 
Brumund and Leonards, 1972) 

Source: Brumund, W.F., and Leonards, G.A. (1972). "Subsidence of Sand Due to Surface 

Vibration," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 98, No. SMl, pp. 27-42. 

With permission from ASCE. 

where Fis the total contact force on the soil and Fav is the average contact force 
on the soil per cycle; however, 

and 

1 
F'av = -(Fmax + Fmin) 

2 

Fmax = W + Fdyman(max) 

Fmax = W - Fdynam(max) 

Substituting Eqs. (9.19) and (9.20) into Eq. (9.18), 

Pav =W 

Thus, from Eqs. (9.17) and (9.21), 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

(9.22) 

Figure 9 .11 shows that the transmitted energy per cycle of oscillation Er, var
ies linearly with the settlement. A plot of the experimental results of settlement 
against peak acceleration for different ranges of Er, is plotted in Figure 9 .12. This 
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energy (from Brumund and Leonards, 1972) 

Source: Brumund, W.F., and Leonards, G.A. (1972). "Subsidence of Sand Due to Surface 

Vibration," Journal of the Soil Mechanics and Foundations, ASCE, Vol. 98, No. SMl, pp. 27-42. 

With permission from ASCE. 

clearly demonstrates that, if the value of the transmitted energy is constant, the 
residual settlement remains constant irrespective of the level of peak acceleration. 

The preceding concept is very important for the analysis of settlement of foun

dation of machineries subjected to vertical vibration. However, at this time, tech
niques of extrapolation of settlement of prototype foundations from laboratory 
model tests are not available. In any case, if the foundation soil is granular and 
loose, it is always advisable to take precautions to avoid possible problem in settle
ment. A specification of at least 70o/o relative density of compaction is often cited. 

On similar lines, the settlement of structures such as tall buildings, due to 
vibratory load, is often a result of structure rocking back and forth. This type of 
settlement is caused by dynamic structural loads that momentarily increase the 
foundation pressure acting on the soil. Lightly loaded structures are least vulner
able to this type of settlement. 

Ell SETTLEMENT OF SAND DUE TO CYCLIC

SHEAR STRAIN 

The experimental laboratory observations described in Section 9.2 have shown 
that when a sand layer is subjected to controlled vertical acceleration, consid
erable settlement does not occur up to a peak acceleration level of amax = g.
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Figure 9.13 Settlement of sand due to cyclic shear strain 

However, in several instances, the cyclic shear strains induced in the soil lay
ers due to ground-shaking seismic events have caused considerable damage 
(Figure 9.13). The controlling parameters for settlement in granular soils due 
to cyclic shear strain have been studied in detail by Silver and Seed (1971). It 
was stated that relative density, maximum shear strain induced in the soil, and 
number of shear strain cycles are the main factors that control the amount of 
volumetric compression occurring in dry sands. These three factors are related 
to peak ground acceleration and the magnitude of the earthquake. Some of the 
results of this study are presented in this section. 

The laboratory work of Silver and Seed was conducted on sand by using 
simple shear equipment developed by the Norwegian Geotechnical Institute. 
The frequency of the shear stress application to the sand specimens was 
1 Hz. Dry sand specimens were tested at various relative densities of compac
tion being subjected to varying normal stresses a 

2 
and amplitudes of shear 

• I 

strain Yxz· 
An example of the nature of variation of the vertical strain £2 =

MI/ H (H = initial height of the specimen, 11H = settlement) with number of 
cycles of shear strain application for a medium dense sand is shown in Figure 9 .14. 
For these tests, the initial relative density (Rn) of compaction was 60o/o. Based on 
Figure 9 .14, the following observations can be made. 

I 

a. For a given normal stress a z and amplitude of shear strain Y xz, the vertical
strain increases with the number of strain cycles. However, a large portion of
the vertical strain occurs in the first few cycles. For example, in Figure 9 .14,
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9 I Compressibility of Soils under Dynamic Loads 
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Figure 9.14 Variation of vertical strain with number of cycles (from Silver and 
Seed, 1971) 

Source: Silver, M.L., and Seed, H.B. (1971). "Volume Changes in Sands During Cyclic Loading," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1171-1182. 

With permission from ASCE. 

the vertical strain occurring in the first 10 cycles is approximately equal to or 
more than that occurring in the next 40--50 cycles. 

b. For a given value of the vertical stress and number of cycles N, the vertical
strain increases with the increase of the shear strain amplitude.

However, one has to keep in mind that a small amount of compaction (i .e., 
increase in the relative density) could markedly reduce the settlement of a given 
soil. Silver and Seed (1971) also observed that, at higher amplitudes of cyclic 
shear strain y;

z 
> 0.05o/o for a given value of N, the vertical strain is not sig

nificantly affected by the magnitude of the vertical stress. This may not be true 
where the shear strain is less than 0.05%. 

The basic understanding of the laboratory test results for the settlement due 
to cyclic shear strain application may now be used for calculation of settlement 
of sand layers due to seismic effect. This is presented in the following section. 
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9.6 Calculation of Settlement of Dry Sand Layers Subjected to Seismic Effect 

Ill CALCULATION OF SETTLEMENT OF DRY SAND

LAYERS SUBJECTED TO SEISMIC EFFECT 

Seed and Silver ( 1972) have suggested a procedure to calculate the settlement of 
a sand layer subjected to seismic effect. This procedure is outlined in a step-by
step manner. 

1. Since the primary source of ground motion in a soil deposit during an earth
quake is due to the upward propagation of motion from the underlying rock
formation, adopt a representative history of horizontal acceleration for the base.

2. Divide the soil layer into n layers. They need not be of equal thickness.
3. Calculate the average value of the vertical effective stress CJ z for each layer.

(Note: In dry sand, total stress is equal to effective stress.)
4. Determine the representative relative densities for each layer.
5. Using the damping ratio and the shear moduli characteristics given in Section

4.19, calculate the history of shear strains at the middle of all n layers.
6. Convert the irregular strain histories obtained for each layer (Step 5) into aver

age shear strains and equivalent number of uniform cycles (see Chapter 7).
7. Conduct laboratory tests with simple shear equipment on representative soil

specimens from each layer to obtain the vertical strains for the equivalent
number of strain cycles calculated in Step 6. This has to be done for the aver
age effective vertical stress levels iiz calculated in Step 3 and the correspond
ing average shear strain levels calculated in Step 6.

8. Calculate the total settlement as

(9.23) 

where ez(I), ez(2), ••• are average vertical strains determined in Step 7 for layers 
1, 2, ... and H1 , H 2 , .•• are layer thicknesses. 

The applicability of this procedure is explained in Example 9 .1 . 

EXAMPLE 9.1 

A 20 m-thick sand layer is shown in Figure 9.15a. The unit weight of soil 
is 1 6.1 kN/m3

• Using a design earthquake record, the average shear strain in 
the soil layer has been evaluated and plotted in Figure 9 .15a. (Note: It was 
assumed that r:u � 0.65r�ax · In this evaluation, the procedure outlined in Sec
tion 4.19 was followed with Gmax = 21 8.82K2(max)CJ

112 kPa and damping= 20o/o. 
The number of equivalent cycles of shear strain application was estimated to 
be 10. Cyclic simple shear tests on representative specimens of this sand were 
conducted with their corresponding vertical stresses as in the field. The results 
of these tests are shown in Figure 9.15b. Estimate the probable settlement of 
the sand layer. 
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Figure 9.15 (a) Plot of average shear strain induced due to earthquake 
(sand unit weight = 16.1 kN/m3; relative density = 50o/o); (b) laboratory simple 
shear test results (number of cycles = 10) 
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9.7 Settlement of a Dry Sand Layer Due to Multidirectional Shaking 

SOLUTION: 

From Figure 9 .15b, it can be seen that, even though tests were conducted with 
different values of a z, the results of e z versus y;z are almost linear in a log
log plot. This shows that the magnitude of the effective overburden pressure 
has practically no influence on the vertical strain. Thus, for this calculation, 
the average line of the experimental results is used. For calculation of settle
ment, the following table can be prepared. 

Shear strain at the 
middle of layer, 

Depth (m) H(m) 
I 

r xz (%) Ez(o/o) HE
z 

X 10-2 (m) 

0-2.5 2.5 0.025 0.043 

2.5-5.0 2.5 0.065 0.13 

5.0-7.5 2.5 0.100 0.22 

7.5-10.0 2.5 0.125 0.28 

10.0-12.5 2.5 0.140 0.31 

12.5-15.0 2.5 0.135 0.30 

15.0-17.5 2.5 0.125 0.28 

17.5-20.0 2.5 0.105 0.23 

�H=IHez 

= 4.4825 X I0-2 m 

=44.8mm 

IJI SETTLEMENT OF A DRY SAND LAYER

DUE TO MULTIDIRECTIONAL SHAKING 

0.1075 

0.325 

0.550 

0.700 

0.775 

0.750 

0.700 

0.575 

Pyke, Seed, and Chan (1975) have made studies to calculate the settlement of 
a dry sand layer subjected to multidirectional shaking; i.e., shaking with accel
erations in the x, y, and z directions as shown in Figure 9 .16. The conclusions 
of this study show that the settlements caused by combined horizontal motions

are approximately equal to the sum of the settlement caused by the components 
acting separately. The effect of the vertical acceleration is again to increase the 
settlement. 

Figure 9 .17 shows the effect of the vertical acceleration on settlement on 
Monterey No. 0 sand with an initial relative density of 60o/o. As an example, let 
us consider the problem of settlement given in Example 9.1. If the same sand 
layer is subjected to similar base accelerations in the x and y directions, and if the 
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Figure 9.16 Multidirectional shaking-definition 
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Figure 9.17 Effect of vertical motion superimposed on horizontal motion 
(from Pyke, Seed, and Chan, 1975) 

Source: Pyke, R., Seed, H.B., and Chan, C.K. (1975). "Settlement of Sands Under 

Multidirectional Shaking," Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, 

No. GT4, pp. 379-398. With permission from ASCE. 
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Problems 

average vertical acceleration in the layer is about 0.2g, the total settlement can be 
estimated as follows: 

Settlement due to the component in the x direction = 44.8 mm 

Settlement due to the component in they direction = 44.8 mm 

Total settlement due to horizontal motions = 89.6 mm 

For az(max) = 0.2 g, from Figure 9.17, the ratio of settlement is about 1.3. Thus, the 
total settlement due to all three components is equal to 1.3(89.6) = 116.48 mm. 
It needs to be pointed out that vertical acceleration acting alone without hori
zontal motion has practically no effect on settlement up to about lg . However, 
when it acts in combination with the horizontal motion, it produces a marked 
increase of total settlement. 

PROBLEMS 

9.1 The results of a set of laboratory simple shear tests on a dry sand 
are given below (vertical stress fiz = 20 kPa; number of cycles = 12; 
frequency = 1 Hz; initial relative density of specimens = 65o/o). 

Peak shear 
I 

strain r xz

(%) 

0.02 

0.04 

0.06 

0.08 

Vertical 

strain 

(%) 

0.035 

0.060 

0.075 

0.090 

Peak shear 
I 

strain r xz

(%) 

0.10 

0.15 

0.20 

Vertical 

strain 

(%) 

0.095 

0.200 

0.280 

Plot the results on log-log graph paper. Approximate the results in the 
form of an equation 

rxz = me; 

9.2 A dry sand deposit is 12 m thick, and its relative density is 65%. This 
layer of sand may be subjected to an earthquake. The number of equiv
alent cycles of shear stress application due to an earthquake is estimated 
to be 12. Following is the variation of the average expected shear strain 
with depth. 
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9 I Compressibility of Soils under Dynamic Loads 

Depth Average shear Depth Average shear 
(m) strain(%) (m) strain(%)

0 0 7.5 0.186 

1.5 0.080 9.0 0.170 

3.0 0.135 10.5 0.160 

4.5 0.155 12.0 0.140 

6.0 0.175 

Estimate the probable settlement of the sand layer using the laboratory 
test results given in Problem 9 .1. 

9.3 Repeat Problem 9.2 for the following ( depth of sand layer = 10 m): 

Depth Average shear strain 

(m) (%) 

0 0 

2.5 0.100 

5.0 0.140 

7.5 0.135 

10.0 0.117 
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Liquefaction of Soil 

IID INTRODUCTION

During earthquakes, major destruction of various types of structures occurs 
due to the creation of fissures, abnormal and/or unequal movement, and loss 
of strength or stiffness of the ground. The loss of strength or stiffness of 
the ground results in the settlement of buildings, failure of earth dams, land
slides, and other hazards. The process by which loss of strength occurs in soil 
is called soil liquefaction. The phenomenon of soil liquefaction is primarily 
associated with medium- to fine-grained saturated cohesionless soils. Exam
ples of soil liquefaction-related damage are the June 16, 1964, earthquake 
at Niigata, Japan, the 1964 Alaskan earthquake, and also the 2001 Republic 
Day earthquake at Bhuj, India. Most of the destruction at port and harbor 
facilities during earthquakes is attributable to liquefaction. Classical exam
ples are Kobe Port, Japan (1995 earthquake) and at Kandla Port, India (2001 
earthquake). 

One of the first attempts to explain the liquefaction phenomenon in sandy 
soils was made by Casagrande (1936) and is based on the concept of critical void 
ratio. Dense sand, when subjected to shear, tends to dilate; loose sand, under 
similar conditions, tends to decrease in volume. The void ratio at which sand 
does not change in volume when subjected to shear is referred to as the critical 
void ratio. Casagrande explained that deposits of sand that have a void ratio 
larger than the critical void ratio tend to decrease in volume when subjected 
to vibration by a seismic effect. If drainage is unable to occur, the pore water 
pressure increases. Based on the effective stress principles, at any depth of a soil 
deposit 

where 

a' =a -u 

a'= effective stress 
a = total stress 
u = pore water pressure 

(10.1) 
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10 I Liquefaction of Soil 

If the magnitude of CJ remains practically constant, and the pore water pressure 
gradually increases, a time may come when CJ will be equal to u. At that time, 
CJ' will be equal to zero. Under this condition, the sand does not possess any 
shear strength, and it transforms into a liquefied state. However, one must keep 
in mind the following facts, which show that the critical void ratio concept may 
not be sufficient for a quantitative evaluation of soil liquefaction potential of 
sand deposits: 

1. Critical void ratio is not a constant value but changes with confining pressure.
2. Volume changes due to dynamic loading conditions are different than the

one-directional static load conditions realized in the laboratory by direct
shear and triaxial shear tests.

For that reason, since the mid-1960s intensive investigations have been
carried out around the world to determine the soil parameters that con
trol liquefaction. In this chapter, the findings of some of these studies are 
discussed. 

DB FUNDAMENTAL CONCEPT OF LIQUEFACTION

Figure 10.1 shows the gradual densification of sand by repeated back-and-forth 
straining in a simple shear test. For this case drainage from the soil occurs freely. 
Each cycle of straining reduces the void ratio of the soil by a certain amount, 
although at a decreasing rate. It is important to note that there exists a threshold 
shear strain, below which no soil densification can take place, irrespective of the 
number of cycles. Decrease in volume of the sand, as shown in Figure 10.1, can 
take place only if drainage occurs freely. However, under earthquake conditions, 
due to rapid cyclic straining this will not be the condition. Thus, during straining 
gravity loadings is transferred from soil solids to the pore water. The result will 
be an increase of pore water pressure with a reduction in the capacity of the soil 
to resist loading. 

This is schematically shown in Figure 10.2. In this figure, let A be the point 
on the compression curve that represents the void ratio ( e0 ) and effective state of 
stress (CJ�) at a certain depth in a saturated sand deposit. Due to a certain num
ber of earthquake-related cyclic straining, let AB= Lie be the equivalent change 
of void ratio of the soil at that depth if full drainage is allowed. However, if 
drainage is prevented, the void ratio will remain as e0 and the effective stress will 
be reduced to the level of a�, with an increase of pore water pressure of magni
tude Liu. So the state of the soil can be represented by point C. If the number of 
cyclic straining is large enough, the magnitude of Liu may become equal to a�, 
and the soil will liquefy. 
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Figure 10.1 Void ratio versus cyclic shear displacement for densification of a 

sand with successive cycles of shear (from Youd, 1972) 
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10 I Liquefaction of Soil

mJ LABORATORY STUDIES TO SIMULATE FIELD

CONDITIONS FOR SOIL LIQUEFACTION 

If one considers a soil element in the field, as shown in Figure 10.3a, when earth
quake effects are not present, the vertical effective stress on the element is equal to 
a', which is equal to av, and the horizontal effective stress on the element equals 
K0av, where K0 is the at-rest earth pressure coefficient. Due to ground-shaking 
during an earthquake, a cyclic shear stress rh will be imposed on the soil ele
ment. This is shown in Figure 10.3b. Hence, any laboratory test to study the 
liquefaction problem must be designed in a manner so as to simulate the condi
tion of a constant normal stress and a cyclic shear stress on a plane of the soil 
specimen. Various types of laboratory test procedure have been adopted in the 
past, such as the dynamic triaxial test (Seed and Lee, 1966; Lee and Seed, 1967), 
cyclic simple shear test (Peacock and Seed, 1968; Finn, Bransby, and Pickering, 
1970; Seed and Peacock, 1971), cyclic torsional shear test (Yoshimi and Oh-oka, 
1973; Ishibashi and Sherif, 1974), and shaking table test (Prakash and Mathur, 
1965). However, the most commonly used laboratory test procedures are the 
dynamic triaxial tests and the simple shear tests. These are discussed in detail in 
the following sections. 

. :·· . · . . .

·.·:.· . .  ·. ·.-:.· .. · . .

Y
G.W.T 

------------ ---------·

Y
G.W.T 

------------------- -------

I u' - a, 
t - V 

(a) 

(b) 

Y 
G.W.T ------------------- -------

Figure 10.3 Application of cyclic shear stress on a soil element due to an 
earthquake 
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10.4 General Concepts and Test Procedures 

Dynamic Triaxial Test 

IIIJ GENERAL CONCEPTS AND TEST PROCEDURES

Consider a saturated soil specimen in a triaxial test, as shown in Figure 10.4a, 
which is consolidated under an all-around pressure of a3 • The correspond
ing Mohr's circle is shown in Figure 10.4b. If the stresses on the specimen are 
changed such that the axial stress is equal to a 3 + (1/2 )ad and the radial stress 
is a3 - (l/2)ad (Figurel0.4c), and drainage into or out of the specimen is not 
allowed, then the corresponding total stress Mohr's circle is of the nature shown 
in Figure 10.4d. Note that the stresses on the plane X-X are 

1 
Total normal stress = a 3, shear stress = + -ad

2 

and the stresses on the plane Y -Y are 

1 
Total normal stress = a 3, shear stress = --ad

2 

Similarly, if the specimen is subjected to a stress condition as shown in 
Figure 10.4e, the corresponding total stress Mohr's circle will be as shown in 
Figure 10.4f. The stresses on the plane X - X are 

1 
Total normal stress = a 3, shear stress = --ad

2 
The stresses on the plane Y - Y are 

1 
Total normal stress = a 3, shear stress = + -ad

2 

It can be seen that, if cyclic normal stresses of magnitude (1/2) ad are applied 
simultaneously in the horizontal and vertical directions, one can achieve a stress 
condition along planes X - X and Y - Y that will be similar to the cyclic shear 
stress application shown in Figure 10.3b. 

However, for saturated sands, actual laboratory tests can be conducted by 
applying an all-around consolidation pressure of a 3 and then applying a cyclic 
load having an amplitude of ad in the axial direction only without allowing drain
age as shown in Figure 10.5a. The axial strain and the excess pore water pressure 
can be measured along with the number of cycles of load (ad) application. 

The question may now arise as to how the loading system shown in 
Figure 10.5a would produce stress conditions shown in Figure 10.4c and e. This 
can be explained as follows. The stress condition shown in Figure 10. 5b is the 
sum of the stress conditions shown in Figure 10.5c and d. The effect of the stress 
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Figure 10.4 Simulation of cyclic shear stress on a plane for a triaxial test 
specimen 

condition shown in Figure 10.5d is to reduce the excess pore water pressure of 
the specimen by an amount equal to (1/2) <J d without causing any change in 
the axial strain. Thus, the effect of the stress conditions shown in Figure 10. 5b 
(which is the same as Figure 10.4c) can be achieved by only subtracting a pore 
water pressure u = (l/2) <J d from that observed from the loading condition shown 
in Figure 10. 5c. Similarly, the loading condition shown in Figure 10. 5e is the 
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10.4 General Concepts and Test Procedures 

(a) 

(b) (c) (d) 

(e) (f) (g) 

Figure 10.5 

loading condition in Figure 10.5f plus the loading condition in Figure 10.5g. The 
effect of the stress condition shown in Figure 10.5g is only to increase the pore 
water pressure by an amount (1/2) CJ d· Thus the effect of the stress conditions 
shown in Figure 10.5e (which is the same as in Figure 10.4e) can be achieved by 
only adding (1/2) CJd to the pore water pressure observed from the loading condi
tion in Figure 10.5f. 
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II!D TYPICAL RESULTS FROM CYCLIC TRIAXIAL TEST

Several cyclic undrained triaxial tests on saturated soil specimens have been 
conducted by Seed and Lee (1966) on Sacramento River sand retained between 

No. 50 and No. 100 U. S sieves. The results of a typical test in loose sand ( void 
ratio, e = 0.87) is shown in Figure 10.6. For this test, the initial all around pres
sure and initial pore water pressure were 200 kPa and 100 kPa, respectively. Thus 

the all around consolidation pressure o-3 is equal to 100 kPa. The cyclic devia
tor stress ad was applied with a frequency of 2 Hz. Figure 10.7 is a plot of the 
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Figure 10.6 Typical pulsating load test on loose saturated Sacramento River 
sand (redrawn from Seed and Lee, 1966) 

Source: Seed, H.B., and Lee, K.L. (1966). "Liquefaction of Saturated Sands During Cyclic 

Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No. SM6, 

pp. 105-134. With permission from ASCE. 
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10.5 Typical Results from Cyclic Triaxial Test 
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Figure 10.7 Typical pulsating load test on loose Sacramento River sand: 

(a) plot of axial strain versus number of cycle of load application; (b) observed

change in pore water pressure versus number of cycles of load application;
(c) change in pore water pressure (corrected to mean principal stress condition)

versus number of cycles of load application (from Seed and Lee, 1966) 

Source: Seed, H.B., and Lee, K.L. (1966). "Liquefaction of Saturated Sands During Cyclic 

Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No. SM6, 

pp. 105-134. With permission from ASCE. 
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10 I Liquefaction of Soil 

axial strain, change in pore water pressure u, and the change in pore water pres
sure corrected to mean extreme principal stress conditions (i.e., subtracting or 
adding (1/2) CJ d from or to the observed pore water pressure) against the number 
of cycles of load application. Figure 10.7c shows that the change in pore water 
pressure becomes equal to CJ3 during the ninth cycle, indicating that the effec
tive confining pressure is equal to zero. During the tenth cycle, the axial strain 
exceeded 20o/o and the soil liquefied. 

The relationship between the magnitude of CJ d against the number of cycles 
of pulsating stress applications for the liquefaction of the same loose sand 
[e = 0.87 , CJ3 = 100 kPa is shown in Figure 10.8. Note that the number of cycles 
of pulsating stress application increases with the decrease of the value of CJd.

The nature of variation of the axial strain and the corrected pore water 
pressure for a pulsating load test in a dense Sacramento River sand is shown in 
Figure 10.9. After about 13 cycles, the change in pore water pressure becomes 
equal to CJ3; however, the axial strain amplitude did not exceed 10% after even 
30 cycles of load application. This is a condition with a peak cyclic pore pressure 
ratio 100%, with limited strain potential due to the remaining resistance of the 
soil to deformation, or due to the fact that the soil dilates. Dilation of the soil 
reduces the pore water pressure and helps stabilization of soil under load. This 
may be referred to as cyclic mobility (Seed, 1979). More discussion on this sub
ject is given in Section 10.11. 

Initial void ratio= 0.87 

a-
3 

= 100 kPa 

0 .._ ___ ........_ ____ ........_ ___ __._ ____ __._ ____ .._ ___ _.. 

3 10 30 100 300 1000 

Number of cycles to cause failure (log scale) 

Figure 10.8 Relationship between pulsating deviator stress and number of 
cycles required to cause failure in Sacramento River sand (redrawn from Seed 
and Lee, 1966) 

Source: Seed, H.B., and Lee, K.L. (1966). "Liquefaction of Saturated Sands During Cyclic 

Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol .92, No. SM6, 

pp. 105-134. With permission from ASCE. 
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10.5 Typical Results from Cyclic Triaxial Test 
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Figure 10.9 Typical pulsating load test on dense Sacramento River 
sand: (a) plot of axial strain versus number of cycles of load application; 
(b) corrected change of pore water pressure versus number of cycles of load
application (from Seed and Lee, 1966) 

Source: Seed, H.B., and Lee, K.L. (1966). "Liquefaction of Saturated Sands During Cyclic 

Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol .92, No. SM6, 

pp. 105-134. With permission from ASCE. 

A summary of axial strain, number of cycles for liquefaction, and the relative 
density for Sacramento River sand are given in Figure 10.10 [for 0'3 = 100 kPa]. 
However, a different relationship may be obtained if the confining pressure 0'3 is 
changed. 

It has been mentioned earlier that the critical void ratio of sand cannot be 
used as a unique criterion for a quantitative evaluation of the liquefaction poten
tial. This can now be seen from Figure 10.11, which shows the critical void ratio 
line for Sacramento River sand. Based on the initial concept of critical void 
ratio, one would assume that a soil specimen represented by a point to the left 
of the critical void ratio line would not be susceptible to liquefaction; likewise, a 
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Figure 10.10 Axial strain from initial liquefaction for pulsating load tests at 
three densities for Sacramento River sand (from Seed and Lee, 1966) 

Source: Seed, H.B., and Lee, K.L. (1966). "Liquefaction of Saturated Sands During Cyclic 

Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol .92, No. SM6, 

pp. 105-134. With permission from ASCE. 

specimen that plots to the right of the critical void ratio line would be vulnerable 
to liquefaction. In order to test this concept, the cyclic load test results on two 

specimens are shown as A and Bin Figure 10.11. Under a similar pulsating stress 

ad = + 120 kPa , specimen A liquefied in 57 cycles, whereas specimen B did not 
fail even in 10,000 cycles. This is contrary to the aforementioned assumptions. 

Thus, the liquefaction potential depends on five important factors: 

1. Relative density Rn

2. Confining pressure a 3

3. Peak pulsating stress ad

4. Number of cycles of pulsating stress application
5. Overconsolidation ratio

The importance of the first four factors is discussed in the following section.
The overconsolidation ratio is discussed in Section 10.9. Soil grain size charac
teristics, particle shape, aging and cementation, depositional environment, drain

age conditions, and construction-induced loads are also known to have some 
effects on the liquefaction potential. 
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Figure 10.11 Critical confining pressure-void ratio relationship for Sacramento 
River sand ( redrawn from Seed and Lee, 1966) 

Source: Seed, H.B., and Lee, K.L. (1966). "Liquefaction of Saturated Sands During Cyclic 

Loading," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol .92, No. SM6, 

pp. 105-134. With permission from ASCE. 

l[D INFLUENCE OF VARIOUS PARAMETERS ON SOIL

LIQUEFACTION POTENTIAL 

Influence of the Initial Relative Density 

The effect of the initial relative density of a soil on liquefaction is shown in 
Figure 10.12. All tests shown in Figure 10.12 are for o-3 = 100 kPa . 

The initial liquefaction corresponds to the condition when the pore water pres
sure becomes equal to the confining pressure a 3• In most cases, 20o/o double amplitude 
strain is considered as failure. It may be seen that, for a given value of ad, the initial 
liquefaction and the failure occur simultaneously for loose sand (Figure 10.12a). 
However, as the relative density increases, the difference between the number of cycle 
to cause 200/o double amplitude strain and to cause initial liquefaction increases. 

Influence of Confining Pressure 

The influence of the confining pressure a3 on initial liquefaction and 20% double 
amplitude strain condition is shown in Figure 10.13. For a given initial relative 
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Figure 10.12 Influence of initial relative density on liquefaction for 

Sacramento River sand (redrawn from Lee and Seed, 1967) 

Source: Lee, K.L., and Seed, H.B. (1967). "Cyclic Stress Condition Causing Liquefaction 

of Sand," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No. SMl , 

pp. 47-70. With permission from ASCE. 

density and peak pulsating stress, the number of cycles to cause initial liquefac

tion or 20o/o strain increases with the increase of the confining pressure. This is 

true for all relative densities of compaction. Conditions that can create greater 

confining pressure are deeper ground water table, soil located at a deeper depth 

and addition of surcharge on the ground surface. 
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10.6 Influence of Various Parameters on Soi I Liquefaction Potential 

Influence of the Peak Pulsating Stress 

Figure 10.14 shows the variation of the peak pulsating stress ad with the 
confining pressure for initial liquefaction in 100 cycles (Figure 10.14a) and for 
20o/o axial strain in 100 cycles (Figure 10.14b). Note that for a given initial void 

ratio (i.e., relative density Rn) and number of cycles of load application, the 
variation of ad for initial liquefaction with a3 is practically linear. A similar 
relation also exists for loose sand with a 20% axial strain condition. It is worth 

noting that the peak pulsating stress is a function of peak ground acceleration 

expected at the site. 
It is also observed that, for sand having the same initial void ratio and same 

effective confining pressure, the higher the pulsating stress, the lower the number 

of cycles of deviatoric stress required to cause liquefaction. 
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Figure 10.13 Influence of confining pressure on liquefaction of Sacramento River 
sand: (a) initial liquefaction; (b) 20% strain (redrawn from Lee and Seed, 1967) 

Source: Lee, K.L., and Seed, H.B. (1967). "Cyclic Stress Condition Causing Liquefaction 

of Sand," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No. SMl, 

pp. 47-70. With permission from ASCE. 
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DD DEVELOPMENT OF STANDARD CURVES

FOR INITIAL LIQUEFACTION 

By compiling the results of liquefaction tests conducted by several investigators 
on various types of sand, average standard curves for initial liquefaction for a 

given number of load cycle applications can be developed. These curves can then 
be used for evaluation of liquefaction potential in the field. Some of these plots 

developed by Seed and Idriss (1971) are given in Figure 10.15. 

Figure 10.15 is a plot of (l/2)(crd /cr3 ) versus D50 to cause initial lique
faction in 10 cycles of stress application. The plot is for an initial relative 
density of compaction of 50o/o. Note that D50 in Figure 10.15 is the median 

grain size, i.e., the size through which 50% of the soil will pass. It should be 

kept in mind that (1/2)0" d is the magnitude of the maximum cyclic shear stress 
imposed on a soil specimen (see planes X - X and Y -Y of Figure 10.4d, f ). 
Another plot for initial liquefaction in 30 cycles of stress application is also 
given in Figure 10.15. These curves are used in Section 10.15 for evaluation of 
liquefaction potential. 
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Figure 10.14 Influence of pulsating stress on the liquefaction of Sacramento 
River sand (a) initial liquefaction in 100 cycles; (b) 20o/o strain in 100 cycles 
(redrawn from Lee and Seed, 1967) 

Source: Lee, K.L., and Seed, H.B. (1967). "Cyclic Stress Condition Causing Liquefaction 

of Sand," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No. SMl , 

pp. 47-70. With permission from ASCE. 
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30 cycles (from Seed and Idriss, 1971) 

0.03 

Source: Seed, H.B. and Idriss, I. M. (1971). "Simplified Procedure for Evaluating Soil 

Liquefaction Potential," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, 

No. SM9, pp. 1249-1273. With permission from ASCE. 

Cyclic Simple Shear Test 

IIIJ GENERALCONCEPTS

Cyclic simple shear tests can be used to study liquefaction of saturated sand by 
using the simple shear apparatus (also see Chapter 4). In this type of test, the 
soil specimen is consolidated by a vertical stress <J v· At this time, lateral stress 
is equal to Ko<Jv (Ko = coefficient of earth pressure at rest). The initial stress 
conditions of a specimen in a simple shear device are shown in Figure 10.16a; 
the corresponding Mohr's circle is shown in Figure 10.16b. After that, a cyclic 
horizontal shear stress of peak magnitude rh is applied (undrained condition) to 
the specimen as shown in Figure 10.16c. The pore water pressure and the strain 
are observed with the number of cycles of horizontal shear stress application. 

Using the stress conditions on the soil specimen at a certain time during the 
cyclic shear test, a Mohr's circle is plotted in Figure 10.16d. Note that the maxi
mum shear stress on the specimen in simple shear is not rh, but 
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Figure 10.16 Maximum shear stress for cyclic simple shear test 

(10.2) 

IIE TYPICAL TEST RESULTS

Typical results of some soil liquefaction tests on Monterey sand using simple 

shear apparatus are shown in Figure 10.17. Note that these are for the initial liq

uefaction condition. From the figure the following facts may be observed: 

1. For a given value of CJv and relative density Rn, a decrease of rh requires an

increase of the number of cycles to cause liquefaction.
2. For a given value of Rn and number of cycles of stress application, a decrease

of CJv requires a decrease of the peak value of rh for causing liquefaction.
3. For a given value of CJv and number of cycles of stress application, rh for

causing liquefaction increases with the increase of the relative density.

Another important factor-the variation of the peak value of rh for causing
initial liquefaction with the initial relative density of compaction (for a given 
value of CJ v and number of stress cycle application)-is shown in Figure 10.18. 

For a relative density up to about 80o/o, the peak value of rh for initial lique
faction increases linearly with Rn. At higher relative densities (which may not be 
practical to achieve in the field, particularly if fines are present), the relationship 

is nonlinear. 
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Figure 10.17 Initial liquefaction in cyclic simple shear test on Monterey sand 
(redrawn from Peacock and Seed, 1968) 
Source: Peacock, WH., and Seed, H.B. (1968), "Sand Liquefaction Under Cyclic Loading 
Simple Shear Conditions," Journal of the Soil Mechanics and Foundations Division, ASCE, 
Vol. 94, No. SM3, pp. 689-708. With permission from ASCE. 

Influence of Test Conditions 

In simple shear test equipment, there is always some nonuniformity of stress 
conditions. This causes specimens to develop liquefaction under lower applied 
horizontal cyclic stresses as compared to that in the field. This happens even 
though care is taken to improve the preparation of the specimens and rough 
platens are used at the top and bottom of the specimens to be tested. For that 
reason, for a given value of av , Rn, and number of cyclic shear stress application, 
the peak value of rh in the field is about l 5o/o-50o/o higher than that obtained 
from the cyclic simple shear test. This fact has been demonstrated by Seed and 
Peacock (1971) for a uniform medium sand (Rn

:::::::: 50%) in which the field values 
are about 20% higher than the laboratory values. 

Influence of Overconsolidation Ratio on the Peak Value of rh

Causing Liquefaction 

For the cyclic simple shear test, the value of rh is highly dependent on the value 
of the initial lateral earth pressure coefficient at rest ( K0 

). The value of K0 , is in 
turn, dependent on the over consolidation ratio (OCR). The variation of rh /av

for initial liquefaction with the overconsolidation ratio as determined by the 
cyclic simple shear test is shown in Figure 10.19. For a given relative density 
and number of cycles causing initial liquefaction, the value of rh /av decreases 
with the decrease of K0 • It needs to be mentioned at this point that all the cyclic 
triaxial studies for liquefaction are conducted for the initial value of K0 = I. 
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10.10 Rate of Excess Pore Water Pressure Increase 
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Figure 10.18 Effect of relative density on cyclic shear stress causing initial
liquefaction of Monterey sand (redrawn from Peacock and Seed, 1968) 
Source: Peacock, WH., and Seed, H.B. (1968), "Sand Liquefaction Under Cyclic Loading 

Simple Shear Conditions," Journal of the Soil Mechanics and Foundations Division, ASCE, 

Vol. 94, No. SM3, pp. 689-708. With permission from ASCE. 

IIlm RATE OF EXCESS PORE WATER PRESSURE

INCREASE 

Seed and Booker (1977) and DeAlba, Chan, and Seed (1975) measured the rate
of excess pore water pressure increase in saturated sands during liquefaction
using cyclic simple shear tests. The range of the variation of pore water pressure
generation u

g 
during cyclic loading is shown in Figure 10.20. The average value of

the variation of u
g 

can be expressed in a nondimensional form as (Seed, Martin,
and Lysmer, 1975) 

where

( 2) ( N )
112a

u
g = - arcsin -. av 1t NI 

u
K 

= excess pore water pressure generated
av = initial consolidation pressure 
N = number of cycles of shear stress application

(10.3)
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Figure 10.19 Influence of overconsolidation ratio on stresses causing 
liquefaction in simple shear tests (redrawn from Seed and Peacock, 1971) 

Source: Seed, H.B., and Peacock, W H. (1971). "Test Procedures for Measuring Soil 

Liquefaction Characteristics," Journal of the Soil Mechanics and Foundations Division, ASCE, 

Vol. 97, No. SM8, pp. 1099-1119. With permission from ASCE. 

Ni = number of cycles of shear stress needed for initial liquefaction 
a = constant ( � 0. 7) 

Hence, the rate of change of u
g 

with N can be given as 

where 

u 
r. = __Lu 

Gv 

1 
(10.4) 

(10.5) 

The preceding relationship is very useful in the study of the stabilization of 
potentially liquefiable sand deposits. 
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Figure 10.20 Rate of pore water pressure buildup in cyclic simple shear test 
(from Seed and Booker, 1977) 

Source: Seed, H. B., and Booker, J. R. (1977). "Stabilization of Potentially Liquefiable Sand 

Deposits," Journal of the Geotechnical Engineering Division, ASCE, Vo. 103, No. GT7, 

pp. 757-768. With permission from ASCE. 

IIIII LARGE-SCALE SIMPLE SHEAR TESTS

In the study of soil liquefaction of granular soils, certain aspects of the test 

procedures have remained a matter for concern. Some of those concerns are as 
follows: 

a. Stress concentration in small-scale simple shear tests leads to some inaccu
racy in the results (Castro, 1969).

b. Stress concentration at the base and cap of cyclic triaxial test specimens and

the possibility of necking leads to nonuniformity of strain and redistribution
of water content (Castro, 1975).

c. Attempts to study liquefaction by using shaking table tests (e.g., Emery,
Finn, and Lee, 1972; Finn, Emery, and Gupta, 1970; OHara, 1972; Ortigosa,
1972; Tanimoto, 19671; Whitman, 1970; Yoshimi, 1967) have also raised
some questions, since the results, in some cases, have been influenced by the
confining effects of the sides of the box.

For that reason, DeAlba, Seed, and Chan (1976) conducted large-scale sim
ple shear tests with one-directional cyclic stress application. The specimens of 
sand used for testing had dimensions of 2300 mm X 1100 mm X 100 mm ( depth). 
Each specimen was constructed over a shaking table. A rubber membrane was 
placed over the sand to prevent drainage. An inertia mass was also placed on top 
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of the sand. Movement of the shaking table produced cyclic stress conditions in 
the sand. The cyclic shear stress was determines as 

where 

(10.6) 

W = total pressure exerted at the base by the specimen and the 
inertia mass 

am = peak acceleration of the uniform cyclic motion 
g = acceleration due to gravity

From the measured displacement(�) of the inertia mass during shaking, the 
average single-amplitude cyclic shear strain could be obtained as 

� r'=+-
2h 

(10.7) 

where y' = average single amplitude cyclic shear strain 
h = specimen height

Figure 10.21 shows the variation of rh /av against the number of cycles of initial 
liquefaction (N =Ni ) for various values of the relative density of sand (Rn ). 
Note that this has been corrected for the compliance effects of the specimens and 
the pore water pressure-measuring system and the effects of membrane penetra
tion. The nature of these plots is similar to those shown in Figure 10.17. 

Figure 10.22 shows a comparison of the variation of rh /av versus Ni (for 
Rn

= 50o/o) obtained from the reported results of Ortigosa (1972), OHara (1972), 
Finn, Emery, and Gupta (1971), and the large-scale simple shear test results of 

Number of cycles, N = Ni (log scale) 
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Figure 10.21 Corrected rh /av versus Ni for initial liquefaction from large-scale 
simple shear tests (from DeAlba, Seed, and Chan, 1976) 

Source: DeAlba, P., Seed, H.B., and Chan, C. K. (1976). "Sand Liquefaction in Large-Scale 

Simple Shear Tests," Journal of Geotechnical Engineering Division, ASCE, Vol. 102, NO. GT9, 

pp. 909-927. With permission from ASCE. 
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Author Length/height ratio Material Sample preparation 

Ortigosa ( 1972) 2.3:1 Medium sand Poured dry, 

compacted 

OHara (1972) 3.4:1 Fine sand 

Finn et al. (1971) 10.3:1 Medium sand Pluviated through 

( extrapolated) water 

DeAl ba et al. (197 6) 22.5:1 Medium sand Pluviated through air 

DeAl ba et al. (197 6) 22.5:1 Medium sand Pluviated through air 

Figure 10.22 Comparison of shaking table test results-Rn = 50o/o (from 
DeAlba, Seed, and Chan, 197 6) 

Source: DeAlba, P., Seed, H.B., and Chan, C. K. (1976). "Sand Liquefaction in Large-Scale 

Simple Shear Tests," Journal of Geotechnical Engineering Division, ASCE, Vol. 102, NO. GT9, 

pp. 909-927. With permission from ASCE. 

DeAlba, Chan, and Seed (1976). The differences between the results are primar
ily due to (1) the effect of membrane penetration and compliance effects, (2) the 
length-to-height ratio of the specimens and hence the boundary conditions, and 
(3) the nature of sample preparation. It is thus evident from Figure 10.22 that
care should be taken to provide proper boundary conditions if meaningful data
are to be obtained from shaking table tests.

Figure 10.23 shows the comparison of "Ch /av versus number of cycles for 
initial liquefaction of saturated sand at Rn = 50% obtained from various studies 
using small-scale and large-scale simple shear devices. The sample preparation 
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1 Yoshimi and Oh-oka (1973) Ring torsion 

2 Finn (1972) Simple shear 

3 DeAlba et al (1976) Shaking table ( corrected) 

4 Seed and Peacock ( 1971) Simple shear 

Figure 10.23 Comparison of shaking table and simple shear liquefaction test 
results-Rn = 50o/o (from DeAlba, Seed, and Chan, 1976) 

Source: DeAlba, P., Seed, H.B., and Chan, C. K. (1976). "Sand Liquefaction in Large-Scale 

Simple Shear Tests," Journal of Geotechnical Engineering Division, ASCE, Vol. 102, NO. GT 9, 

pp. 909-927. With permission from ASCE. 

techniques in all the studies were similar. Based on Figure 10.23, it can be con
cluded that the results are in good agreement and the errors due to stress concen
tration in small-scale simple shear tests are not very large. 

The variation of single-amplitude cyclic shear strain [Eq. (10.7)] with N for 
dense sands obtained from large-scale simple shear tests is shown in Figure 10.24. 
Note that the magnitude of y' increased gradually with N after initial liquefac

tion up to a maximum limiting value and remained constant thereafter. 
Figure 10.25 shows the relationships between cyclic stress ratio and number of 

stress cycles producing average shear strains of 5%, 10%, 15%, and 20% calculated 
from displacements measured from the large-scale simple shear tests. The results 
of Figure 10.25 have been replotted as values of cyclic stress ratio causing initial 
liquefaction, or different levels of shear (for N = 10), versus relative densities in 
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Figure 10.25 Relationship between 'rh/CJv and number of cycles causing 
different levels of strain (from DeAlba, Seed, and Chan, 1976) 

Source: DeAlba, P., Seed, H.B., and Chan, C. K. (1976). "Sand Liquefaction in Large-Scale 

Simple Shear Tests," Journal of Geotechnical Engineering Division, ASCE, Vol. 102, NO. GT9, 

pp. 909-927. With permission from ASCE. 
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Figure 10.26a. The results show that each curve is asymptotic to a certain value of 
Rn. Hence a curve of limiting shear strain versus Rn can be obtained as shown in 

Figure 10.26b. 
Based on Figure 10.26, the following conclusions can be drawn. 

1. For initial Rn < 45o/o, the application of cyclic stress ratio high enough to
cause initial liquefaction also causes unlimited shear strain. This corresponds
to a condition of liquefaction.
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Figure 10.26 Limiting shear strains-IO cycles of stress (from DeAlba, Seed, 
and Chan, 197 6) 

Source: DeAlba, P., Seed, H.B., and Chan, C. K. (1976). "Sand Liquefaction in Large-Scale 

Simple Shear Tests," Journal of Geotechnical Engineering Division, ASCE, Vol. 102, NO. GT9, 

pp. 909-927. With permission from ASCE. 
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10.12 Correlation of Liquefaction Results from Simple Shear and Triaxial Tests 

2. For initial Rn > 45o/o, the application of cyclic stress ratio high enough to
cause initial liquefaction will result in a limited amount of shear strain. This is
the case of soil with limited strain potential or the condition of cyclic mobility.

3. The limiting strain potential decreases with the increase of the initial relative
density of soil.

Before moving on to establish procedures for determination of liquefaction in 
the field, the results from the laboratory tests can be summarized as follows: 

1. Liquefaction is a phenomenon in which the strength and stiffness of a soil
is reduced by earthquake shaking or other rapid loading. Liquefaction and
related phenomena have been responsible for tremendous amounts of dam
age in historical earthquakes around the world.

2. Flow liquefaction is a phenomenon in which the static equilibrium is destroyed
by static or dynamic loads in a soil deposit with low residual strength. Residual
strength is the strength of a liquefied soil.

3. Cyclic mobility is a liquefaction phenomenon, triggered by cyclic loading,
occuring in soil deposits with static shear stresses lower than the soil strength.
Deformations due to cyclic mobility develop incrementally because of static
and dynamic stresses that exist during an earthquake.

4. To understand liquefaction, it is important to recognize the conditions that
exist in a soil deposit before an earthquake.

Development of a Procedure for Determination 
of Field Liquefaction 

EID CORRELATION OF LIQUEFACTION RESULTS

FROM SIMPLE SHEAR AND TRIAXIAL TESTS 

The conditions for determination of field liquefaction problems are related 
to the ratio of r h /av ; this is also true for the case of cyclic simple shear stress 
tests. However, in the case of triaxial tests, the results are related to the ratio of 
(l/2)(ad /a3 ). It appears that a correlation between rh /av and (l/2)(ad /a3 ) needs 
to be developed (for a given number of cyclic stress application to cause liquef ac
tion). Seed and Peacock (1971) considered the following alternative criteria for 
correlation for the onset of soil liquefaction. 

1. The maximum ratio of the shear stress developed during cyclic loading to
the normal stress during consolidation on any plane of the specimen can be
a controlling factor. For triaxial specimens, this is equal to (l/2)(ad /a3 ), and
for simple shear specimens it is about rh /(Koav ). Thus,
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or 

1
-(Jd _2 -- --

1 

[ ] 
-

(Jd rh =Ko _2_ 
(J v simple shear (J 3 

(10.8) 

2. Another possible condition for the onset of liquefaction can be the max
imum ratio of change in shear stress during cyclic loading to the normal 
stress during consolidation on any plane. For simple shear specimens this is 
about rh/ (Kocrv ), and for triaxial specimens it is (1/2)(crd/cr3 ). This leads to 
the same equation as Eq. (10.8) 

3. The third possible alternative can be given by the ratio of the maximum shear
stress induced in a specimen during cyclic loading to the mean principal 
stress on the specimen during consolidation. For simple shear specimens: 

Maximum shear stress during cyclic loading = ri + [� O"v (1- K0 )
2 

J (10.2) 

Mean principal stress during consolidation (Figure 10.16a) 

(10.9) 

For triaxial specimens, maximum shear stress during cyclic loading= l/2crd and 
mean principal stress during consolidation = CJ 3; so 

2 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



10.12 Correlation of Liquefaction Results from Simple Shear and Triaxial Tests 

or 

[;:]= (10.1 0) 

4. The fourth possible alternative may be the ratio of maximum change in
shear stress on any plane during cyclic loading to the mean principal stress
during consolidation. Thus, for simple shear specimens, it is equal to
3rh /[av (l + 2K0 )], and for triaxial specimens it is (l/2)(ad /a3 ); so

rh 1 ( ) -ad (
1 

J-
=- l+2Ko _2_ 

[ O" v limp le shea, 3 
O" 3 

Thus, in general, it can be written as 

( 1 

J
'l°h I -(1 d 
- =a 2 

( (J" V ),imple shea, (J" J . tnax 

where a' = K0 for Cases 1 and 2, 

a'= 

and 

a' = ! (1 + 2Ko)
3

for Case 3 

for Case 4 

(10.11) 

(10.12) 

The values of a' for the four cases considered here are given in Table 10.1. 
From Table 1 0.1 it may be seen that for normally consolidated sands, the 

value of a' is generally in the range 45o/o--50o/o, with an average of about 47%. 
Finn, Emery, and Gupta (197 1 ) have shown that, for initial liquefaction of 

normally consolidated sands, a' is equal to (1/2)(1 + K0 ). The value of K0 can be 
given by the relation (Jaky, 1944) 

K0 = 1 - sin ¢ (10.1 3) 
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10 I Liquefaction of Soil 

Table 10.1 Values of a' [Eq. (10.12)]a 

Ko Case 1 Case2 

0.4 0.4 0.4 

0.5 0.5 0.5 

0.6 0.6 0.6 

0.7 0.7 0.7 

0.8 0.8 0.8 

0.9 0.9 0.9 

1.0 1.0 1.0 

aAfter Seed and Peacock (1971). 

Case3 Case4 

0.60 

0.25 0.67 

0.54 0.73 

0.83 

1.00 

0.80 

0.87 

0.93 

1.00 

Source: Seed , H.B., and Peacock, W H. (1971). "Test Procedures for 

Measuring Soil Liquefaction Characteristics," Journal of the Soil Mechanics 

and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119. With 

permission from ASCE. 

Castro (1975) has proposed that the initial liquefaction may be controlled by
the criteria of the ratio of the octahedral shear stress during cycle loading to the

effective octahedral normal stress during consolidation. The effective octahedral
normal stress during consolidation CJ�ct is given by relation 

(10.14) 

where CJ{, CJ2, CJ3 are, respectively, the major, intermediate, and minor effective
principal stresses. 

The octahedral shear stress 'l'oct during cyclic loading is 

(10.15) 

where CJ1, CJ2, CJ3 are, respectively, the major, intermediate, and minor principal
stresses during cyclic loading. 

For cyclic triaxial tests, 

(
'l'

�
ct J = 2 J2[�crdJ 

(J' oct triax 3 (J' 3 triax 

For cyclic simple shear tests, 

(10.16) 

(10.17) 
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10.13 Correlation of the Liquefaction Results from Triaxial Tests to Field Conditions 

Thus, 

or 

or 

(

'roct

J (

'roct

J 
(J �ct simple shear - (J �ct triax 

( 

'roct 

J 

= ! �( 1 +J{O )( t:
3

d

Jtn'ax 

(J �t simple shear v 

= i(1+2Ka)(_!_cr
d

J 
J3 _2_ 

(J 3 triax 

Comparing Eqs. (10.12) and (10.18), 

2 
-(1 + 2Ko) 

a'=_3 ____ J3 

(10.18) 

(10.19) 

IIIE] CORRELATION OF THE LIQUEFACTION RESULTS

FROM TRIAXIAL TESTS TO FIELD CONDITIONS 

Section 10.9 explained that the field value of (rh /av ) for initial liquefaction is 
about 15o/o-50o/o higher than that obtained from simple shear tests. Thus, 

( I_!!_ J = /3 ( !_!!__J (J v field (JV simple shear 
(10.20)

The approximate variation of /3 with relative density of sand is given in
Figure 10.27. Combining Eqs (10.12) and (10.20), one obtains 

(10.21) 

where C, = a'/3
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10 I Liquefaction of Soil 
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Figure 10.27 Variation of correction factor f3 with relative density [Eq. (10.20)] 

Using an average value of a'= 0.47 and the values of /3 given in Figure 
10.27, the variation of C, with relative density can be obtained. This is shown in 
Figure 10.28. 

Equation (10.21) presents the correlations for initial liquefaction between the 
stress ratios in the field, cyclic simple shear tests, and cyclic triaxial tests for a 

c, 

0.7 

0.6 

0.5 

0.4 
0 

/ 
V 

__, 

10 20 30 40 50 60 70 80 90 

Relative density, Rn(%)

Figure 10.28 Variation of C, with relative density [Eq. (10.21)] 
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10.14 Zone of Initial Liquefaction in the Field 

given sand at the same relative density. However, when laboratory tests are con
ducted at relative density, say, Rno), whereas the fields conditions show the sand 
deposit to be a relative density of Rn c2) , one has to convert the laboratory test 
results to correspond to a relative density of Rnc2). It has been shown in Figure 
10.18 that rh for initial liquefaction in the laboratory in a given number of cycles 
is approximately proportional to the relative density (for Rn

< 80o/o). 

Thus, 

(10.22) 

where rh[Rno>J is the cyclic peak shear stress required to cause initial liquefaction 
in the laboratory for a given value of er v and number of cycles, by simple shear 
test (Rn

= Rncl)); and rh[Rncz>J is the cyclic peak stress required to cause initial liq
uefaction in the field for the same value of rrv and number of cycles, by simple 
shear test ( Rn = Rnc2) ). Combining Eqs. (10.21) and (10.22) 

(�J = C, ( � CJJ

J
Rn(2) 

O' v field[ Rn(z) J � . [ J Rn(l) 
tnax Rn(l) 

[tD ZONE OF INITIAL LIQUEFACTION IN THE FIELD

(10.23) 

There are five general steps for determining the zone in the field where soil lique
faction due to an earthquake can be initiated: 

1. Establish a design earthquake.
2. Determine the time history of shear stresses induced by the earthquake at

various depths of sand layer.
3. Convert the shear stress-time histories into N number of equivalent stress

cycles (see Section 7.8). These can be plotted against depth, as shown in
Figure 10.29.

4. Using the laboratory test results, determine the magnitude of the cyclic
stresses required to cause initial liquefaction in the field in N cycles ( deter
mined from Step 3) at various depths. Note that the cyclic shear stress levels
change with depth due to change of O'v. These can be plotted with depth as
shown in Figure 10.29.

5. The zone in which the cyclic shear stress levels required to cause initial lique
faction (Step 4) are equal to or less than the equivalent cyclic shear stresses
induced by an earthquake is the zone of possible liquefaction. This is shown
in Figure 10.29.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



10 I Liquefaction of Soil 

Equivalent peak shear stress 
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' -

-·-·-· . ' 

Zone of 
initial 

liquefaction 

\ Equivalent cyclic , 
shear stress � 

developed due 1

to earthquake � 
(number of cycles = N) � 

Figure 10.29 Zone of initial liquefaction in the field 

Peak cyclic shear 
stress needed to cause 

liquefaction in N cycles 
(laboratory) 

II!IIa RELATION BETWEEN MAXIMUM GROUND

ACCELERATION AND THE RELATIVE DENSITY 

OF SAND FOR SOIL LIQUEFACTION 

This section discusses a simplified procedure developed by Seed and Idriss (1971) 
to determine the relation between the maximum ground acceleration due to an 
earthquake and the relative density of a sand deposit in the field for the initial 
liquefaction condition. Figure 10.30a shows a layer of sand deposit in which we 
consider a column of soil of height h and unit area of cross section. Assuming 
the soil column to behave as a rigid body, the maximum shear stress at a depth h 
due to a maximum ground surface acceleration of amax can be given by 

where r max = the maximum shear stress 
y = the unit weight of soil 
g = acceleration due to gravity. 

(10.24) 
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Average value 
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Figure 10.30 (a) Maximum shear stress at a depth for a rigid soil column; 

(b) range of the shear stress reduction factor C n for the deformable nature of

soil (from Seed and Idriss, 1971) 

Source: Seed, H.B. and Idriss, I. M. (1971). "Simplified Procedure for Evaluating Soil 

Liquefaction Potential," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, 

No. SM9, pp. 1249-1273. With permission from ASCE. 
463 
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10 I Liquefaction of Soil 

However, the soil column is not a rigid body. For the deformable nature of 

the soil, the maximum shear stress at a depth h, determined by Eq. (10.24), needs 
to be modified as 

(10.25) 

where Cn is a stress reduction factor. The range of Cn for different soil profiles 
is shown in Figure 10.30b, along with the average value up to a depth of 12.0 m. 

It has been shown that the maximum shear stress determined from the shear 

stress-time history during an earthquake can be converted into an equivalent 
number of significant stress cycles. According to Seed and Idriss, one can take 

r •• = 0.65rmax(mornr> = 0.65Cn [ ( 7 )amax] (10.26) 

The corresponding number of significant cycles N for '!av is given in 
Table 10.2. 

Note that although the values of N given in the table are somewhat different 

from those given in Figure 7.15, it does not make a considerable difference in the 
calculations. One can now combine Eq. (10.23), which gives the correlation of 

laboratory results of cyclic triaxial test to the field conditions, and Eq. (10.26) to 
determine the relationships between amax and Rn. This can be better shown with 
the aid of a numerical example. 

In general, the critical depth of liquefaction (see Figure 10.29) occurs at a 

depth of about 6.0 m) when the depth of water table dw is 0-3.0 m; similarly, the 
critical depth is about 9.0 m when the depth of water table is about 4.5 m. 

Liquefaction occurs in sands having a median size D50 of 0.075-0.2 mm. 

Consider a case where 

Dso = 0.075 mm 

dw 
= 4.5m 

r = unit weight of soil above the ground water table (GWT) 

= 18.5kN/m3

Ysat = unit weight of soil below GWT = 19.6 kN/m3

r' = effective unit weight of soil below GWT 

= (19.6-9.81) = 9.79 kN/m3

significant number of stress cycles = 10 

(earthquake magnitude = 7) 
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10.15 Relation between Maximum Ground Acceleration and the Relative Density 

Table 10.2 Significant Number of Stress Cycles N Corresponding to 'rav

Earthquake magnitude 

7 

7.5 

8 

N 

10 

20 

30 

The critical depth of liquefaction dis about 9 m. At that depth the total nor
mal stress is equal to 

4.5 (r) + 4.5 Ysat = 4.5(18.5) + 4.5(19.6) = 171.45 kPa

From Eq. (10.26)

The value of Cn ford= 9 m is 0.925 (Fig. 10.30). Thus,

,r = (0.65)(0.925)(171.45)amax = 103.08 amax 
"av 

Again, from Eq. (10.23)

g g 

'rh(field)[Rnc2)] = O' vC
, ( 

(l/2)ad
)

0'3 triax[Rno)l 

Rn(2) 

Rn(I) 

(10.27)

At a depth 9 m below the ground surface, the initial effective stress O"v is equal
to 4.5(y) + 4.5(y') = 4.5(18.5) + 4.5(9.79) = 127.31 kPa. 

. 
(

(l/2)ad
)From Figure 10.15, for D50 = 0.075 mm, 

a . . 0 

:::::: 0.215.
3 tnax1al Rn(l) = 50% 

Hence

_ 127.31[C,(0.215)]Rn(2) _
'rh(field)[Rnc2)] - - 0.547 C,RD(2) 

50 

For liquefaction, 'rav of Eq. (10.27) should be equal to rh(fieid)[Rnc2)J·

Hence,

103.08 amax 
= 0.547C,Rn(2)

g 

(10.28)
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10 I Liquefaction of Soil 

Table 10.3 Relation Between amaxl g versus Rn(2) [Eq. (10.29)] 

RD(2) 

(%) ca 
llmax 

r 

g 

20 0.54 0.0572 

30 0.54 0.0859 

40 0.54 0.1144 

50 0.56 0.1484 

60 0.61 0.1940 

70 0.66 0.2449 

80 0.71 0.3010 

aFrom Figure 10.28. 

or 

amax 
- = 0.0053C,Rnc2) 

g 
(10.29) 

It is now possible to prepare Table 10.3 to determine the variation of amaxl g 

with Rn(2). Note that Rn(2) is the relative density in the field. 
Figure 10. 31 shows a plot of amax / g versus the relative density as determined 

from Table 10.3. For this given soil (i.e., given D50, dw, and number of significant 
stress cycles N), if the relative density in the field and amax / g are such that they 
plot as point A in Figure 10.31 (i.e., above the curve showing the relationship of 
Eq. (10.29)], then liquefaction would occur. On the other hand, if the relative 
density and amaxl g plot as point B [i.e., below the curve showing the relationship 
of Eq. (10.29)], then liquefaction would not occur. 

Diagrams of the type shown in Figure 10. 31 could be prepared for various 
combinations of D50, dw, and N. Since, in the field, for liquefaction the range of 
D50 is 0.075-0.2 mm and the range of N is about 10-20, one can take the criti
cal combinations (i.e., D50 = 0.075 mm, N = 20; D50 = 0.2 mm, N = 10) and plot 
graphs as shown in Figure 10.32. These graphs provide a useful guide in the eval
uation of liquefaction potential in the field. 

These graphs are also useful, particularly when implementing a possible 
ground improvement technique in the field to reduce the liquefaction sus
ceptibility. Using this, one can find how much increase in relative density or 
in other words, how much compaction is required to be achieved in the field 
(using principles of basic soil mechanics), once the in situ conditions of the 
soil and the possible maximum ground acceleration the site likely to experience 
are known. 
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10.15 Relation between Maximum Ground Acceleration and the Relative Density 
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= 4.5m

D50 = 0.075 mm 

BO 

o.__ ______ __._ ______ __. ______ ___._ ______ __._ __ __. 

0 20 40 60 80 

Relative density, RD(%) 

Figure 10.31 Plot of amax I g versus relative density from Table 10. 3 

• Liquefaction, amax estimated d
w

= 3.0 m 
• No liquefaction, amax estimated

"'No liquefaction, amax recorded
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• 
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0 .__ ____ ......:... _____ .__ ____ ....,_ ____ ___....._____ _, 

0 20 40 60 80 100 

Relative density(%) 

90 

Figure 10.32 Evaluation of liquefaction potential for sand below the ground 
surface (redrawn from Seed and Idriss, 1971) 

Source: Seed, H.B. and Idriss, I. M. (1971). "Simplified Procedure for Evaluating Soil 

Liquefaction Potential," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, 

No. SM9, pp. 1249-1273. With permission from ASCE. 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned. or duplicated. in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



10 I Liquefaction of Soil 

ml[a LIQUEFACTION ANALYSIS FROM STANDARD

PENETRATION RESISTANCE 

Another way of evaluating the soil liquefaction potential is to prepare correla
tion charts with the standard penetration resistance. After the occurrence of the 
Niigata earthquake of 1964, Kishida (1966), Kuizumi (1966), and Ohasaki (1966) 
studied the areas in Niigata where liquefaction had and had not occurred. They 
developed criteria, based primarily on standard penetration resistance of sand 
deposits, to differentiate between liquefiable and nonliquefiable conditions. Sub
sequently, a more detailed collection of field data for liquefaction potential was 
made by Seed and Peacock (1971). These results and some others were presented 
by Seed, Mori, and Chan (1971) in a graphical form, which is a plot of rh /av

versus (Ni)
6()

. This is shown in Figure 10.33. In this figure note that (N1 )6() 
is the 

corrected standard penetration resistance for an effective overburden pressure 

• Liquefaction, stress ratio based on estimated acceleration
o Liquefaction, stress ratio based on good acceleration data
• No liquefaction, stress ratio based on estimated acceleration
D No liquefaction, stress ratio based on good acceleration data

0.5 
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.sr o.3 1---���-+--��----t1t----+-���..C-'--+-���----1 
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(N1)60 (blows/30 cm) 

Figure 10.33 Correlation between rh /av and (N1 )6() 
(from Seed, 1979) 

Source: Seed, H. B. (1979). "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground 
During Earthquakes," Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, 
No. GT2, pp. 201-255. With permission from ASCE. 
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10.16 Liquefaction Analysis f rom Standard Penetration Resistance 

of 100 kPa (i.e., N60, which is the standard penetration resistance for an average 
energy ratio of 60o/o corrected to an effective overburden pressure of 100 kPa). 
Figure 10.33 shows the lower bounds of the correlation curve causing liquefac
tion in the field. However, correlation charts such as this cannot be used with 
confidence in the field, primarily because they do not take into consideration the 
magnitude of the earthquake and the duration of shaking. 

In order to develop a better correlation chart, Seed (1979) considered the results 
of the large-scale simple shear test conducted by DeAlba, Chan, and Seed (1976), 
which were discussed in Section 10.11. These results were corrected to take into 
account the significant factors that effect the field condition, and they are shown in 
Table 10.4. It is important to realize that the ( 'rh/a v )test values listed in Table 10.4 
are those required for a peak cyclic pore pressure ratio of 100% and cyclic shear 
strain of +5o/o. Also, the correlation between Rn and ( N1 ) 60 

shown in columns 1 and 
2 are via the relationship established by Bieganousky and Marcuson (1977). 

Excellent agreement is observed when the values of (N1 ) 60 
and the corre

sponding ('rh /av )field values (columns 2 and 6) shown in Table 10.4 are super
imposed on the lower-bound correlation curve shown in Figure 10.33. Hence 
the lower-bound curve of Figure 10.33 is for an earthquake magnitude M = 7.5. 
Proceeding in a similar manner and utilizing the results shown in Table 10.4, 
lower-bound curves for M = 6, 7.5, and 8.25 can be obtained as shown in 
Figure 10.34. Also shown in this figure is the variation of the limited strain 
potential in percent (for effective overburden pressure of 100 kPa). Figure 10.34 
can be used for determination of the liquefaction potential in the field. In doing 
so, it is important to remember that 

(10.30) 

Table 10.4 Data from Large-scale Simple Shear Tests on Freshly Deposited Sanda

M=5-6 M=7-7.5 M=S-8.25 
5 cycles 15 cycles 25 cycles 

Relative (N1) 60 (::L (::L (::L (::L (::L (::L density, RD (blows/30 cm) 

(1) (2) (3) (4) (5) (6) (7) (8)

54 13.5 0.22 0.25 0.17 0.19 0.155 0.175 

68 23 0.30 0.34 0.24 0.27 0.210 0.235 

82 33 0.44 0.49 0.32 0.37 0.280 0.315 

90 39 0.59 0.66 0.41 0.46 0.360 0.405 

Note: (N1 )
60 

= standard penetration resistance (N60 ), corrected to an effective overburden pressure of 
100 kPa; M = magnitude of earthquake. 

aAfter Seed (1979). 

Source: Seed, H.B. (1979). "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During 
Earthquakes," Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255. 
With permission from ASCE. 
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10 I Liquefaction of Soil 
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Figure 10.34 Variation of (rh /CJv )fieid with (N1 ) 60 and M(from Seed, 1979) 
Source: Seed, H.B. (1979). "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground 

During Earthquakes," Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, 

No. GT2, pp. 201-255. With permission from ASCE. 

where 

N60 = field standard penetration test values for an average energy ratio of 60o/o 

C N = correction factor to convert to an effective overburden pressure

(CJ�) of 100 kPa 

The correction factor can be expressed as (Liao and Whitman, 1986) 

CN =9.78 {T 
��

(10.31) 

where CJ� is in kPa. 
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10.16 Liquefaction Analysis f rom Standard Penetration Resistance 

A slight variation of Figure 10.34 is given by Seed, Idriss, and Arango (1983) 
and Seed and Idriss (1982). It can be seen from this figure that, if (N1 ) 60 

is more 
than 30, liquefaction is unlikely to occur, in general. 

Discussion regarding soil liquefaction has so far been limited to the case of 
clean sands; however, liquefaction can, and has been, observed in silty sands, 
mine tailings and silts. It is generally reported that mine tailings behave similar 
to clean sands under seismic loading. Information regarding the liquefaction of 
silty sand is somewhat limited, and there is no consensus among the researchers 
as of date. In general, it is observed that liquefaction resistance of silty sands, up 
to certain silt content, is more than that of clean sands. It may be due to the fact 
that voids in clean sands are occupied by silt particles and thus these may inhibit 
a quick volume change behavior. Seed et al. (1984) presented limited correlations 
between (rh /av )rieid, (N1 )60 

and percent fines (F) for an earthquake magnitude 
M = 7.5, which can be summarized as follows: 

Lower bound of ( 'l' h /av ) field 
Percent of fines, for which liquefaction is likely 

(Ni) 60 (M = 7.5) 

<5 5 0.055 

10 0.115 

15 0.170 

20 0.220 

25 0.295 

30 0.500 

10 5 0.098 

10 0.160 

15 0.225 

20 0.295 

25 0.500 

35 5 0.130 

10 0.185 

15 0.260 

20 0.400 

EXAMPLE 10.1 

Geotechnical investigations carried out in a deposit of sand provided the 
field standard penetration numbers N60 as given in the table below. During 
the geotechnical investigations, it is also observed that groundwater table is 
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10 I Liquefaction of Soil 

encountered at a depth of 3.0 m measured from the ground surface. Given for 
the sand: 

Dry unit weight= 17.6 kN/m3

Saturated unit weight= 19.6 kN/m3

Determine, for an earthquake magnitude of 7 .5, if liquefaction will occur at 
the site. Assume that the maximum peak ground acceleration at the site is 

amax = 0.15 g.

Depth (m) N6o (blows/30cm) 

1.5 6 

3.0 8 

4.5 10 

6.0 14 

7.5 16 

9.0 20 

10.5 20 

SOLUTION: 

Step 1. The following table can now be prepared for calculating the shear resis
tance available in the sand deposit at different depths. 

Vertical effec- CN (N1) r,/ (;:L Depth (m) tive stress (k.Pa) [Eq. (10.31)] (blows/30 cm) rh (kPa) 

1.5 26.4 1.90 11 0.128 3.38 

3.0 52.8 1.35 11 0.128 6.76 

4.5 67.4 1.19 12 0.140 9.45 

6.0 82.1 1.08 15 0.168 13.80 

7.5 96.8 0.99 16 0.184 17.82 

9.0 111.5 0.93 19 0.210 23.42 

10.5 126.2 0.87 17 0.195 24.61 

a (Ni )w = CNN6o (rounded off). 

bFrom Figure 10.34. 

Step 2. The following table can now be prepared for calculation of the shear 
stresses induced in the sand deposit at different depths [rav using Equa
tion (10.26)]. 
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10.17 Other Correlations for Field Liquefaction Analysis 

Total vertical llmax 

Depth (m) stress (kPa) g cDa Tavb (kPa) 

3.0 52.8 0.15 0.98 5.04 

4.5 82.2 0.15 0.97 11.97 

6.0 111.6 0.15 0.96 15.99 

7.5 141.0 0.15 0.95 20.02 

9.0 170.4 0.15 0.94 23.94 

10.5 199.8 0.15 0.90 26.91 

aFigure 10.30 (b) 

brav = 0.65 CD [(yh/ g)amax ] 

Step 3. Check to see if 'rav > rh at any depth in the sand deposit. In that case, 
liquefaction would occur. From the preceding two tables, it can be seen 
that between depths of 3.0 m and 10.5 m, 'rav is greater than rh , so 
liquefaction occurs between these depths. 

[[IE OTHER CORRELATIONS FOR FIELD LIQUEFACTION

ANALYSIS 

Correlation with Cone Penetration Resistance 

In many cases during field exploration, the variation of the cone penetration 
resistance is measured with depth. Similar to the standard penetration number 
N60 , the field cone penetration resistance needs to be corrected to a standard 
effective overburden pressure. Thus, for clean sand (Ishihara, 1985) 

where qc = field cone penetration resistance (kg/cm2) 

C N = correction factor 

(10.32) 

q: = corrected cone penetration resistance (kg/cm2 ) ( corrected 
to a�= 100 kPa ) 

If the value of q; for a�= 100 kPa is needed, then Eq. (10.31) may be used. It 
has been noted from several field tests that 

where A = 4 to 5 for clean sands. 
Assuming the value of A to be about 4, 

q�(a� = 100 kPa) � 4( N1) 60 

(10.33) 
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10 I Liquefaction of Soil 

Thus, 
I 

(N ) = qc(a� = 100 kPa) 
1 60 

4 
(10.34) 

Once the estimated values for (N1 ) 60 
are known, Figure 10.34 can be used to 

check the possibility for liquefaction in the field. 

Use of Threshold Strain 

It was discussed in Section 10.2 that for densification of sand under drained 
condition, a threshold shear strain level must be exceeded. Similarly, under 
undrained conditions, a threshold cyclic shear strain level needs to be exceeded 
to cause build up of excess pore water pressure and thus possible liquefaction. 
So if it can be shown that a cyclic shear strain in soil as a result of an earth
quake does not exceed a certain threshold level, liquefaction cannot occur. This 
would provide a conservative evaluation due to the fact that liquefaction may 
not always occur even if the strains do exceed the threshold level (Committee 
on Earthquake Engineering, Commission of Engineering and Technical 
Systems, 1985). 

The peak shear strain caused by earthquake ground motion can be estimated 
from Eq. (10.25) as 

y' = rmaxCmodif) = Cn [(yhl g )amax]
G G 

(10.35) 

where y' = peak shear strain 
G = shear modulus 

or 

Cnhamax 
(G/Gmax )v; 

(10.36) 

where Vs = shear wave velocity in soil 
Gmax 

= maximum shear modulus (see Chapter 4) 

The magnitude of G/Gmax can be assumed to be about 0.8. Substituting into 
Eq. (10.36) and combining with an average value of Cn, 

I 1.2amax h r = --
v; 

(10.37) 

By measuring Vs with depth h, the variation of y' can be calculated. The 
typical value of the threshold strain is about O.Olo/o (Dobry et al., 1981). If the 
magnitude of the calculated y' does not exceed this threshold limit, then there is 
safety against liquefaction. 
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10.18 Simplified Procedures for Determining Soil Liquefaction Using In Situ Index 
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Figure 10.35 Definition of liquefaction-resistance stratum (H1 ) and 
liquefiable stratum (H2 ) 

Correlation with Overlying Liquefaction-Resistant Stratum 

H2 · 
t 

The earthquake of magnitude 7. 7 that occurred on May 26, 1983, in the northern 
part of Japan has provided enough data to study the effect of an overlying 
liquefaction-resistant stratum on the liquefaction potential of sand with standard 
penetration resistance N60 < 10. Figure 10.35 defines the terms H1 and H2 which are, 
respectively, the liquefaction resistant stratum and the liquefiable stratum. Based on 
field observations, Ishihara (1985) developed a correlation chart between H1 , H2 ,

and maximum acceleration amax· This correlation chart is shown in Figure 10.36. 

IIIE] SIMPLIFIED PROCEDURES FOR DETERMINING SOIL

LIQUEFACTION USING IN SITU INDEX 

The simplified procedures pioneered by Seed and Idriss (1971) following the 
disastrous earthquakes in Alaska, USA and in Niigata, Japan in 1964 are the most 
widely used methods for liquefaction potential evaluation in North America and 
throughout much of the world. The Seed and Idriss procedure (1971) has been 
modified and improved periodically by several researchers with various field and 
test data. The simplified procedures described in this section require two terms 
to assess the liquefaction resistance of soils: (1) the seismic loading on a soil 
element, expressed in terms of cyclic stress ratio (CSR); and (2) the capacity of 
the soil to resist liquefaction, expressed in terms of cyclic resistance ratio (CRR). 

Using these procedures, the factor of safety (F's) against liquefaction is defined as 
the ratio of CRR over CSR: 

F.
=

CRR 

s CSR 
(10.38) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



10 I Liquefaction of Soil 
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Figure 10.36 Ishihara's proposed boundary curves for site identification of 
liquefaction-induced damage 

In deterministic analysis, the liquefaction is likely to occur if E's< 1.0. The sim
plified procedures necessitate the use of in situ index testing in common practice. 
Four in situ test methods are widely used in the simplified procedures to deter
mine the liquefaction potential: (1) the standard penetration test (SPT); (2) the 
cone penetration test (CPT); (3) measurement of in situ shear wave velocity (vs ); 
and (4) the Becker penetration test (BPT). Table 10.5 summarizes the advantages 
and disadvantages of each test. 

Cyclic Stress Ratio 

Based on the formulation of Eq. (10.26) by Seed and Idriss (1971), the adjusted 
cyclic stress ratio (CSR) is expressed as (Idriss and Boulanger, 2010): 

0.65(amax J(O"� Jrd CSR= g O"v 

(MSF)(Ka ) 
where a max = peak horizontal acceleration at ground surf ace (g) 

g = acceleration due to gravity 
O" v = total stress of the soil at the required depth (kPa) 

(10.39) 
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10.18 Simplified Procedures for Determining Soil Liquefaction Using In Situ Index 

Table 10.5 Comparison of Advantages and Disadvantages of Various Field 
Tests for Evaluating Liquefaction Resistance (Summarized from 
Youd et al., 2001) 

Data available from 
Test type liquefaction sites Stress-strain behavior Repeatability Soil type 

(1) (2) (3) (4) (5) 

SPT Abundant Partially drained, Poor to good Nongravel 
large strain 

CPT Abundant Drained, large strain Very good Nongravel 

Vs Limited Small strain Good All 

BPT Sparse Partially drained Poor Mostly gravel 

Source: Based on data from Youd, T. L., Idriss, I. M., Andrus, R.D., Arango, I., Castro, 
G., Christian, J.T., Dobry, R., Liam Finn, W.D., Harder, L.F., Jr., Hynes, M.E., Ishihara, 
K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., III, Martin, G.R., Mitchell, J.K., Moriwaki, 
Y, Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H., II. (2001). "Liquefaction 
resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF 
workshops on evaluation of liequefaction resistance of soils." Journal of Geotechnical and 

Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 817-833. 

a� = effective stress of the soil at the required depth (kPa) 
yd = depth-dependent shear stress reduction factor; 

MSF = magnitude scaling factor 
Ka = overburden correction factor for cyclic stress ratio 

For practical interest, the parameter yd can be estimated as a function of depth and 
earthquake moment magnitude (Mw ). [For the definition of Mw, see Eq. (7.2).] 
The following correlations are suggested by Idriss and Boulanger (2010): 

where 

a=-1.012-1.126sin 5.133+ z
11.73 

radians 

z /3 = 0.106 + 0.118sin 5.142 +--
11.28 

radians 

(10.40) 

(10.41) 

(11.42) 

where z is depth of interest (m) and M
w 

is moment magnitude (dimensionless). 
These equations are applicable to a depth z < 34 m. For z > 34 m, the following 
expression is applicable: 

yd = 0.12exp(0.22Mw ) (10.43) 
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10 I Liquefaction of Soil 

The magnitude scaling factor (MSF) is given as follows: 

MSF = -0.058 + 6.9 exp(-0.25Mw) < 1.8 (10.44) 

Overburden Correction Factor for CSR, Ka

The following equations are suggested by Idriss and Boulanger (2010) to evalu
ate overburden correction factor K

a 
using SPT blow count: 

where Pa = atmospheric pressure (::::::: 100 kPa) 

1 Ca =

) 
<0.3 

18.9 -2.55 (N1)60 ,cs

(10.45) 

(10.46) 

The term (N1)6o,cs is the equivalent clean-sand corrected blow count, computed 
as: 

(10.47) 

The adjustment 11(N1 )60 is a function of fines content (FC in o/o) and can be com
puted as: 

11 N = ex 1 63 + 
9 · 7 - 15 · 7 

[ ( J
2

]( 1)60 p . 
FC + 0.01 FC + 0.01 

The term ( N1 )60 is the overburden corrected blow count, defined as: 

(N1)60 = CN(N6o) 

(10.48) 

(10.49) 

where N60 is the SPT blow count measured with an energy ratio of 60%, and C N
is defined as: 

where 

m = 0.784- 0.0768�(N1)60 ,cs 

Ka can also be estimated using CPT data as follows: 

(10.50) 

(10.51) 

(10.52) 
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where 

10.18 Simplified Procedures for Determining Soil Liquefaction Using In Situ Index 

1 
Ca= < 0.3 

37.3 - 8.27(qclN )0·264
(10.53) 

where qc1N is the normalized cone penetration resistance (Robertson and Wride, 
1998): 

where 

(10.54) 

qc = the cone tip resistance (MPa) 
Pa = the atmospheric pressure ( � 100 kPa)
er� = the effective stress of the soil at the required depth (kPa)

n = the exponent that varies with soil type and is typically equal 
to 0.5. 

Liquefaction Analysis from Standard Penetration Resistance 

The cyclic resistance ratio (CRR) corrected to Mw = 7.5 can be expressed in 
terms of the overburden corrected blow count (Youd et al., 2001): 

CRR = 
1 + (N1 )60 + 50 __ 1_ 

34 - (N1 )60 135 [(lO)(N1 )60 + 45]2 200 
(10.55) 

The CRR adjusted to Mw = 7.5 and er�= 100 kPa expressed in terms of equiv
alent clean-sand corrected blow count can be given as (Idriss and Boulanger, 
2010): 

CRR = exp{<�].�" + [ (�'1:" J -[ (�].:" J -[ (�].�" r - 2.8} (10.56)

Figure 10.37 shows the SPT boundary curve defined by Eq. (10.56) which distin
guishes the liquefied cases and non-liquefied cases. 

Liquefaction Analysis from Cone Penetration Resistance 

The CRR corrected for Mw = 7.5 can be estimated using the simplified equation
proposed by Robertson and Wride (1998): 

CRR = 93[
(qc1N )cs ]

3 

+ 0.08 [for 50 < (qc1N )cs< 160] (10.57) 
1000 

CRR = 0.833[ 
(qc1N )cs]+ 0.05 [for (qc 1N )cs < 50]1000 

(10.58) 
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10 I Liquefaction of Soil 

• Liquefaction

o No liquefaction

- SPT boundary curve (Idriss and Boulanger 2010)
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Figure 10.37 SPT clean sand boundary curve for magnitude 7.5 earthquakes 
with data from liquefaction case histories 

where (qc1N )cs is the equivalent clean sand normalized CPT penetration resis
tance and can be estimated as: 

(10.59) 

where qc1N is the normalized cone penetration resistance computed with 
Eq. (10.54) and Kc is a correction factor which is a function of soil behavior 
index le. The soil behavior index le can be estimated as: 

where 

le = [(3.47 - Q)2 
+ (log 10 F + 1.22)2 ]° -5 (10.60) 

F = [fsl(qc - O'v )](100) is the normalized friction ratio (o/o) 
Is = the CPT sleeve friction (kPa) 
Q = normalized CPT penetration resistance (dimensionless) and 

can be computed as: 

(10.61) 
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• Liquefaction
o No liquefaction

- CPT boundary curve (Robertson and Wride 1998)
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Figure 10.38 CPT clean sand boundary curve for magnitude 7.5 earthquakes 
with data from liquefaction case histories 

where the exponent n is typically equal to 1.0; Pa2 is a reference pressure in the 
same units as qc and O"v (i.e., Pa2 = O.l MPa if qc and O"v are in MPa). Thus Kc is 
expressed as: 

Kc
= l (for le

< 1.64) (10.62) 

Kc
= -0.40311 + 5.5811! -21.631; + 33.751c -17.88 (for le > 1.64) (10.63)

Figure 10.38 shows the CPT boundary curve which distinguishes the liquefied 
cases and non-liquefied cases [defined by Eqs. (10.57) and (10.58)]. 

Liquefaction Analysis from Shear Wave Velocity 

In the Vs-based method, the CRR corrected to an earthquake magnitude 7.5 is 
calculated as (Andrus and Stokoe, 2000): 

CRR = 0.22[
(Vs1)cs ]2 + 2.8[

1 - _1_
] 

100 215 - (Vsi)cs 215
(10.64) 
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10 I Liquefaction of Soil 

where ( Vs1 )cs is the clean soil equivalence of the stress-corrected shear wave
velocity (mis), which is calculated using a fines content adjustment factor Kcs: 

(10.65)

where Vs1 is the overburden stress-corrected shear wave velocity (mis); Vs is the in
situ measurement of small-strain shear wave velocity (mis) and Kcs is the fines
content adjustment factor, estimated as follows: 

where

Kcs = l (for FC < 5o/o)

Kcs = l + T(FC-5) (for 5% < FC < 35%)

Kcs = l + 30T (for FC > 35%)

T = 0.009 - 0.0109( Vsi 

J + 0.0038( Vsi 

J
2 

100 100 

Liquefaction Analysis from Becker penetration test 

(10.66)

(10.67)

(10.68)

The aforementioned SPT, CPT and vs-based methods are more suitable for eval
uating liquefaction resistance of non-gravelly soils. For gravelly soils, the Becker
penetration test (BPT) through correlations with SPT is widely used for foun
dation design and liquefaction analysis, particularly in western North America.
Typically, the BPT facility consists of a double-walled casing with 168 mm in
diameter and 3 m in length driven into the ground with a double acting die
sel-driven pile hammer. The Becker penetration resistance is determined to be
the number of blow count needed for the casing to penetrate an increment of
300 mm. The measured BPT blow count normalized to the 30% reference energy
level is (Sy and Campanella, 1994): 

Nb3o =Nb(:OJ (10.69)

where Nb is the measured blow count, and E is the measured maximum trans
ferred energy expressed as a percentage of the rated hammer energy of 11.0 kl 

Very few liquefaction case histories with BPT data have been reported.
Hence BPT is generally used to estimate the equivalent SPT-N values, and the
liquefaction resistance is evaluated using simplified procedures based on SPT.

Figure 10.39 shows the BPT-SPT correlation considering various levels of shaft
resistance (Rs). 

In simplified procedures, a factor of safety of 1.2-1.5 is recommended by the
Building Seismic Safety Council (1997) to account for the possible uncertainties.
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Figure 10.39 BPT-SPT correlations for different BPT resistances (Rs, in kN) 
(from Sy and Campanella, 1994) 

Source: Sy, A., and Campanella, R. G. (1994). "Becker and Standard Penetration Tests (BPT

CPT) Correlations and Considerations of Casing Friction." Canadian Geo technical Journal, 

Vol. 31(3), pp. 343-356. Copyright© 2008 Canadian Science Publishing or its licensors. 

Reproduced with permission. 

EXAMPLE 10.2 

Determine the factor of safety (F's) against liquefaction for a site with the fol
lowing seismic and soil parameters at the critical depth z = 8 .2 m and ground 
water table depth at 1.5 m: amax = 0.20 g, Mw = 7.0, (N1 )60 = 7.6, FC = 67o/o, 
av= 155 kPa, a:= 89 kPa. 

SOLUTION: 

Step 1: Determination of cyclic resistance ratio (CRR): 
From Eq. (10.48), 

� N = ex 1 63 +
9·7 15·7 

[ ( )
2

]( 1 )60 p . 
FC + 0.01 FC + 0.01 

From Eq. (10.47), 

= ex 1.63 +
9·7 -

15·7
= 5.6 [ ( )

2

] p 
67 + 0.01 67 + 0.01 

(N1)60,cs = (N1)60 + �(N1)60 = 7.6 + 5.6 = 13.2

From Eq. (10.56), 
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10 I Liquefaction of Soil 

CRR = ex 
{ ( N1 )60,cs + [ ( N1 )60,cs ]

2 

-[ ( N1 )60,cs ]
3 

-[ ( N1 )60,cs ]
4 

_ 2_ 8} p 14.1 126 23.6 25.4 

=ex [
13.2 +(13.2

)
2 -(�) 3 -(�)

4 

-2.8]=0.142p 14.1 126 23.6 25.4 

Step 2: Determination of cyclic stress ratio (CSR) : 

From Eq. (10.39), 

0.65( amax J((J� )rd

CSR= g (JV 

(MSF)(Ka ) 

Stress reduction factor [Eqs. (10.40), (10.41), and (10.42)]: 

a = -1.012 -1.126 sin ( 5 .13 3 + z ) 
11.73 

= -1.012 -1.126sin(5.133 + 8·2 ) = -0.5249 
11.73 

/3 = 0.106 + 0.118sin(5.142 + z ) 
11.28 

= 0.106 + 0.118sin(5.142 + 8·2 ) = 0.0589 
11.28 

r
d 

= exp(a + f3Mw ) = exp[-0.5249 + (0.0589)(7.0)] = 0.89 

Magnitude scaling factor [Eq. (10.44)]: 

MSF = -0.058 + 6.9exp(-0.25Mw ) = -0.058 + 6.9exp[(0.25)(-7)] = 1.14 < 1.8 

Overburden correction factor for CSR [Eq. (10.46)]: 

1 1 
Ca

=
I <0.3= � = 0.1<0.3 

18.9 - 2.55-v(N1 )60 ,cs 18.9 - 2.55-v13.2 

From Eq. (10.45), 

((J� J ( 89 
) Ka =I-Caln - <1.0=1-(0.l) ln - = 1.01<1.1 

Pa 100 

From Eq. (10.39), 

0.65( amax J((J: )r
d 

(0.65)(0.20)( 155)co.89) 
CSR= g (JV = 89 =0.175 

(MSF)(Ka ) (1.14)(1.01) 
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10.18 Simplified Procedures for Determining Soil Liquefaction Using In Situ Index 

Step 3: Determination of factor of safety ( Fs ): 

F = CRR = 0.142 =O.Sl
s CSR 0.175 

EXAMPLE 10.3 

Determine the factor of safety (F's) against liquefaction for a site with the 
following seismic and soil parameters at depth z = 4. 6 m and ground water 
table depth at 2.7 m: amax = 0.25 g, Mw = 7.6, av

= 81.2 kPa, a: = 62.6 kPa, 
qc = 8.5 MPa, le = 1.93. 

SOLUTION: 

Step 1: Determination of cyclic resistance ratio (CRR): 

From Eq. (10.54), 

= (!k__J( Pa J
n 

= (
8500

J(_!QQ_J
O

.S = l07.43 qc lN 
Pa a: 100 62.6 

From Eq. (10.63), 

Kc = -0.403/J + 5. 581/J -21.63/; + 33. 75/c -17 .88 
= -0.403(1.93) 4 

+ 5.581(1.93) 3
- 21.63(1.93) 2 

+ 33.75(1.93) -17.88 = 1.22

From Eq. (10.59), 

(qc 1N ) cs
= (1.22) (107.43) = 131.06 

From Eq. (10.57), for 50 < (qc 1N ) cs < 160, 

CRR = 93[
(qclN ) cs

]
3 

+ 0.08 = 93(
l3I.06

J
3 

+ 0.8 = 0.289
1000 1000 

Step 2: Determination of cyclic stress ratio (CSR): 

From Eq. (10.39), 

0.65( 
amax J( a� Jr d 

CSR= g av 

(MSF) (Ka ) 

Stress reduction factor [Eqs. (10.40), (10.41), and (10.42)]: 

a= -1.012 -1.126sin(5.133 + z J11.73 

= -1.012 -1.126sin(5.133 + 
4·6 

J = -0.2379
11.73 
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10 I Liquefaction of Soil 

/3 = 0.106 + 0.118sin(5.142 + z J11.28 

= 0.106 + 0.118sin(5.142 + 
4·6

J = 0.0270 
11.28 

rd = exp(a + f3Mw ) = exp[-0.2379 + (0.0270)(7.6)] = 0.97 

Magnitude scaling factor [Eq. (10.44)]: 

MSF =-0.058 + 6.9exp(-0.25Mw ) =-0.058 + 6.9exp[-(0.25)(7.6)] = 0.97 < 1.8 

Overburden correction factor for CSR [Eq. (10.53)]: 

1 1 C = < 0.3 = = 0.11 < 0.3 a 3.73- 8.27(qc1N )0·264 3.73 -8.27(107.43)0·264

From Eq. (10.52), 

Ka = 1- Ca ln(a� J < 1.0 = 1- (0.1 l) ln( 
62·6

J = 1.05 < 1.0
Pa 100 

From Eq. (10.39), 

0.65( amax J(a: Jr d (0.65)(0.25)( 81.2
Jco.97)

CSR= g av = 62·6 = 0.211 
(MSF)(Ka ) (0.97)(1) 

Step 3: Determination of factor of safety (Fs ): 

F. = CRR = 0.289 = 1_37
s CSR 0.211 

mEJ REMEDIAL ACTION TO MITIGATE LIQUEFACTION

In order to ensure the functionality and safety of engineering projects that are 
likely to be subjected to damage due to possible liquefaction of the subsoil, sev
eral actions can be taken: 

1. Removal or replacement of undesirable soil. If liquefaction of a soil layer
under a structure is a possibility, then it may be excavated and recompacted
with or without additives. Otherwise the potentially liquefiable soil may be
replaced with nonliquefiable soil.

2. Densification of the in situ material. This can be achieved by using several
techniques such as vibroflotation, dynamic compaction, and compaction piles.
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10.19 Remedial Action to Mitigate Liquefaction 

3. In situ soil improvement by grouting and chemical stabilization.

4. Use of relief wells such as gravel or rock drains for the control of undesir
able pore water pressure. Figure 10.40 is a schematic diagram of gravel or

rock drains. The purpose of the installation of gravel or rock drains is to

dissipate the excess pore water pressure almost as fast as it is generated in the

t _ - -

. <:T .. 

• 

• 

• 

• 

(a) 

• 

__ 1 • 

• 

i.-------R
e
---------'-------R

e
-----� 

(b) 

Figure 10.40 Gravel drains: (a) plan; (b) section at S - S
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10 I Liquefaction of Soil 

same deposit due to cyclic loading. The design principles of gravel and rock 
drains have been developed by Seed and Booker ( 1977) and are described 
here. Assuming that Darcy's law is valid, the continuity of flow equation in 
the sand layer may be written as 

a ( kh au J a ( kh au J a ( kv au J ae 
ox Yw ox + oy Yw oy + oz Yw oz - ot

(10.70) 

where kh = coefficient of permeability of the sand in the horizontal 
direction 

kv = coefficient of permeability of the sand in the vertical 
direction 

u = excess pore water pressure 
Yw = unit weight of water 

£ = volumetric strain ( compression positive) 

During a time interval dt, the pore water pressure in a soil element changes 
by du. However, if a cyclic shear stress is applied on a soil element, there is an 
increase of pore water pressure. In a time dt, there are dN number of cyclic 
shear stresses; the corresponding increase of pore water pressure is (oug /oN)dN 
(where uK is the excess pore water pressure generated by cyclic shear stress-see 
also Section 10.10). Thus, the net change in pore water pressure in time dt is 
equal to [du -(auK /oN)dN], and

or 

where 

0£ = lnv
3 
[ou -(oug /oN)dN]

0£ 
= 

mv (au_ OUg aNJ 
at 3 at aN at 

7nv
3 

= coefficient of volume compressibility. 

Combining Eqs. (10.70) and (10.71), 

a ( kh au J a ( kh au J a ( kv au J- ( au aug a NJ 
ox Yw ox + oy Yw oy oz Yw oz mv3 ot - oN ot 

(10.71) 

(10.72) 

If mv3 
is a constant and radial symmetry exists, then Eq. (10.72) can be writ

ten in cylindrical coordinates as 

(10.73) 
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10.19 Remedial Action to Mitigate Liquefaction 

For the condition of purely radial flow, Eq. (10.73) takes the form 

kh (cFu +!au)- au - OUg oN
rwmv3 

o2r r or ot oN ot 
(10.74) 

In order to solve Eq. (10.74), it is necessary to evaluate the terms kh, mv3
, aN lot, 

and ou
K
loN. The value of kh can be easily determined from field pumping tests. 

The coefficient of volume compressibility can be determined from cyclic triaxial 
tests (Lee and Albaisa, 1974). The term aN lot can be expressed as 

where 

(10.75) 

Ns = significant number of uniform stress cycles due to an 
earthquake 

td = duration of an earthquake.

The rate of excess pore water pressure build up, au
g
loN, in a saturated 

undrained cyclic simple shear test is given by Eq. (10.4) (Section 10.10). For 
radial flow conditions, the relation given by Eq. (10.74) has been solved by Seed 
and Booker (1977). It has been shown that the ratio u/av is a function of the 
following parameters: 

RI radius of rock or gravel drains 

Re effective radius of the rock or gravel drains 
(10.76) 

(10.77) 

Using these parameters, the solution to Eq. (10.74) is given in a nondimensional 
form in Figure 10.41 for design of rock or gravel drains. In Figure 10.41, the 
term rg 

is defined as 

r.
=

greatest limiting value of u
g 

chosen for design 
g 

<Iv 

(10.78) 

In obtaining the solutions given in Figure 10.41, it was assumed that the 
coefficient of permeability of the material used in the gravel or rock drains is 
infinity. However, in practical cases, it would be sufficient to have a value of 

kh(rock or gravel) :::::::: 200
k(sand) 
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1.0 

0 
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Rd

Re

(b) 

Figure 10.41 Relation between greatest pore water pressure ratio and 

drain system parameters: (a) Ns l Ni
= l; (b) Ns l Ni

= 2; (c) NJ Ni
= 3; 

(d) Ns l Ni
= 4 (from Seed and Booker, 1977)

Source: Seed, H.B., and Booker, J. R. (1977). "Stabilization of Potentially Liquefiable Sand 

Deposits," Journal of the Geotechnical Engineering Division, ASCE, Vo. 103, No. GT7, 

pp. 757-768. With permission from ASCE. 
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Figure 10.41 ( Continued) 
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10 I Liquefaction of Soil 

EXAMPLE 10.4 

For a sand deposit, it is given that 

fnv
3
= 2.8 x 10-5m2 /kN 

kh 
= 0.02 mm/s = 2 X 10- 5 mis 

For a design earthquake, the equivalent number of uniform stress cycles 
(for uniform stress = 'l'av ) was determined to be 30. The duration of the earth
quake is about 65 s. 

From laboratory tests, it was determined that 12 cycles of cyclic stress 
application (the peak magnitude of the cyclic stress is equal to 'X'av) would be 
enough to cause initial liquefaction in the sand. 

Assuming that the radius of the gravel drains to be used is 0.25 m, and 
r
g 
= 0. 6, determine the spacing of gravel drains. 

SOLUTION: 

From Eq. (10.77), 

T = 
kh ( 

td 
J = 

2 X 10-5 [ 65 
] = 75 72 ad 

Yw mv3 
R'j 9.81 2.8 X 10-5 (0.25)2

Ns 
I 6-=30 12=2.5, r

g 
=0. 

Ni 

Referring to Figure 10.41b, for Tad
= 75.72, Ns l Ni

= 2, r
g 
= 0.6, 

� �0.17 
Re 

From Figure 10.41c, for Tad
= 75.72, Ns l N1 

= 3, r
g 

= 0.6, 

� �0.2 
Re 

1 Thus, for Ns l Ni
= 2.5, Rt! Re� -(0.17 + 0.2) = 0.185. Hence, 

2 

PROBLEMS 

Re= � = 0.25 
=l.35m

0.185 0.185 

10.1 Explain the terms initial liquefaction and cyclic mobility.

10.2 For a sand deposit the following is given: 
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Median grain size (D50 ) = 0.2 mm 

Depth of water table = 3 m 

Unit weight of soil above GWT = 17 kN/m3

Unit weight of soil below GWT = 19.5 kN/m3

Expected earthquake magnitude = 7.5 

Problems 

Make all calculations and prepare a graph showing the variation of 

amax I g and the relative density in the field for liquefaction to occur. 

10.3 Repeat Problem 10.2 for a median grain size of 0.075 mm. 

10.4 Repeat Problem 10.2 for the following conditions: 

Mean grain size (D50) = 0.075 mm 

Depth of water table = 4. 6 m 

Unit weight of soil above GWT = 15 kN/m3

Unit weight of soil below GWT = 18 kN/m3

Expected earthquake magnitude = 8 

10.5 Repeat Problem 10.4 for a mean grain size of 0.2 mm. 

10.6 Consider the soil and the groundwater table conditions given in Problem 
10.2. Assume that the relative density in the field is 60o/o. The maximum 
expected intensity of ground shaking (amax l g) is 0.2 and the magnitude 
of earthquake is 7 .5. 

a. Calculate and plot the variation of the shear stress 'tav induced in the

sand deposit with depth 0-21 m. Use Eq. (10.26).
b. Calculate the variation of the shear stress required to cause liquefac

tion with depth. Plot the shear stress determined in the same graph
as used in (a). Use Eq. (10.23).

c. From the plotted graph, determine the depth at which liquefaction is
initiated.

10.7 Repeat Problem 10.6(a)-(c) for the data given in Problem 10.4. Assume 
the relative density of the sand to be 60% and the maximum expected 
intensity of ground shaking to be 0.15g. 

10.8 The standard penetration test results (N
60

) of a sand deposit at a certain 
site are given below in tabular form. The groundwater table in located 
at a depth of 2 m below the ground surf ace. The dry and saturated 
unit weights of sand are 17 kN/m3 and 19.0 kN/m3, respectively. For 
an expected earthquake magnitude M = 6 and maximum acceleration 

amax = 0.1 g, will liquefaction occur? 
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10 I Liquefaction of Soil 

Depth (m) N 60 (blows/30 cm) 

1.5 8 

3.0 7 

4.5 12 

6.0 15 

7.5 17 

9.0 17 

10.9 In a sand deposit, the groundwater table is located at a depth of 2 m 
measured from the ground surf ace. Following are the shear wave veloc
ities in the sand deposit. 

Depth (m) 

2-4

4-6

6-10

Shear wave velocity, Vs (mis) 

450 

600 

675 

For a maximum ground acceleration amax = 0.16 g, determine whether 
liquefaction is likely to occur. 

10.10 Determine the factor of safety (F's) against liquefaction for a site with the 
following seismic and soil parameters at the critical depth z = 2. 8 m and 
ground water table depth at 0.5 m: amax = 0.12 g, Mw = 6.5, (N1 )60 = 6.9, 
FC = 5o/o, CJ v 

= 5 3  kPa, and a� = 30 kPa. 

10.11 Determine the factor of safety (F's) against liquefaction for a site with 
the following seismic and soil parameters at depth z = 5 .5 m and ground 
water table depth at 2.0 m: amax = 0.18g, Mw

= 6.5, crv
= 102.0 kPa, 

a� = 67.7 kPa , qc = 2.5 MPa, and le
= 2.10. 

10.12 Solve the gravel drain problem given Example 10.4 for r
g 

= 0.7. 

10.13 Repeat Example 10.4 of the gravel drain with the following data: 

mv3 
= 3.5x l0-5 m2 /kN 

kh = l.4x l0-5 m/s 

Equivalent number of uniform stress cycles due to earthquakes = 20 

Duration of earthquake= 50  s 

Number of uniform stress cycles for liquefaction= 12 

Radius of gravel drains= 0.3 m 

r
g 

= 0.7 
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Machine Foundations 

on Piles 

IJD INTRODUCTION

It was mentioned in Section 5.4 that, for low-speed machines subjected to verti
cal vibration, the natural frequency of the foundation-soil system should be at 
least twice the operating frequency. In the design of these types of foundations, 
if changes in size and mass of the foundation (more popularly known as tuning 

of a foundation) do not lead to a satisfactory design, a pile foundation may be 
considered. It is also possible that the subsoil conditions are such that the vibra
tion of a shallow machine foundation may lead to undesirable settlement. In 
many circumstances the load-bearing capacity of the soil may be low compared 
to the static and dynamic load imposed by the machine and the shallow founda
tion. In that case the design will then dictate consideration of the use of piles. It 
should be kept in mind that the use of piles will, in general, increase the natural 
frequency of the soil-pile system and may also increase the amplitude of vibra
tion at resonance. 

The soil-structure interaction of the deep foundations is not well understood 
and although rigorous theoretical solutions exist, they are mostly confined to 
researchers. The practice in design offices is usually based on ignoring the stiff
ness of the soil and only the stiffness of the pile is taken into account. 

In this chapter, the fundamental concepts of pile foundations of vibrating 
machines will be considered. It should also be kept in mind that the piles sup
porting machine foundations are for cases of low amplitudes of vibration (because 
allowable motion is small and dynamic loads are small compared to static loads) 
in contrast to those encountered under earthquake-type loading (large strain 
conditions). For that reason, when encountered with the selection of proper 
parameters for soil such as the shear modulus G, the value that correspond to 
low amplitudes of strain should be used. Elastic theory thus is the basis of design 
methods described in this chapter. 
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11.2 End-Bearing Piles 

Piles Subjected to Vertical Vibration 

In general, piles can be grouped into two broad categories: 

1. End-bearing piles. These piles penetrate through soft soil layers up to a hard
stratum or rock. The hard stratum or rock can be considered as rigid.

2. Friction piles or floating piles. The tips of these piles do not rest on hard
stratum. The piles resist the applied load by means of frictional resistance
developed at the soil-pile interface.

11!1 END-BEARING PILES

Figure 11.1 shows a pile driven up to a rock layer. The length of the pile is equal 
to L, and the load on the pile coming from the foundations is W. This problem 
can be approximately treated as a vertical rod fixed at the base (that is, at the rock 
layer) and free on top. For determining the natural frequency of the piles, three 
possible cases may arise. 

Case 1. If Wis very small(= 0), the natural frequency of vibration can be given 
by following Eq. (3.57) as 

where 

f, 
_ OJn _ l 

�
p 

n---- -

21t 4L PP

fn = natural frequency of vibration 
OJn = natural circular frequency 

Ep = modulus of elasticity of the pile material 
p = density of the pile material 

p 

(11.1) 

Case 2. If W is of the same order of magnitude as the weight of the pile, the 
natural frequency of vibration can be given by Eq. (4.20). (Note similar end con
ditions between Figure 4.13 and Figure 11.1.) Thus, 

or 

where 

_AL_y;�P 
= [-OJn _L] tan[-OJn_L]

W Vc(P) Vc(P) 

A = area of the cross section of the pile 
y

P 
= unit weight of the pile material 

OJn = natural circular frequency 
Vc(P) = longitudinal wave propagation velocity in the pile 

w 
O'o = 

-

A 

(11.2) 

(11.3) 
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11 I Machine Foundations on Piles

w 

. . . ·:, . 

Weak soil 

L 

Rock 

Figure 11.1 End-bearing pile 

Figure 11.2 shows a plot of WnL/vc(P) against Lr
P 
/CJ0 that can be used to deter

mine Wn and fn - Note that 

(11.4) 

Case 3. If Wis larger and the weight of the pile is negligible in comparison, then 
from Eq. (11.2) 

However, 

where g = acceleration due to gravity. 
So, 
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Figure 11.2 Plot of Eq. (11.3) 

or 

f, _ 1 �Epg
-- --

2n aoL
(11.5) 

where a0 
= axial stress = W/A. 

Richart (1962) prepared a graph for fn with various values of pile length L
and a0 , and this is shown in Figure 11.3. In preparing Figure 11.3, the following 
material properties have been used. 

Material 

Steel 

Concrete 

Wood 

200 X 106 75.5 

21 X 106 23.6 

8.25 X 106 6.3 

EXAMPLE 11.1 

A machine foundation is supported by four pre stressed concrete plies driven 
to bedrock. The length of each pile is 24 m, and they are 0.3 m X 0.3 m in 
cross section. The weight of the machine and the foundation is 1360 kN. 
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Figure 11.3 Resonant frequency for vertical vibration of a point bearing pile 
(from Richart, 1962) 

Source: Richart, F.E., Jr. (1962). "Foundation V ibrations," Transactions, ASCE, Vol. 27, Part 1, 

pp. 863-898. With permission from ASCE. 

Given: unit weight of concrete = 24 kN/m3 and the modulus of elasticity of the 
concrete used for the piles = 24.5 X 106 kPa. Determine the natural frequency 
of the pile-foundation system. 

SOLUTION: 

There are four piles. The weight carried by each pile is 

W =
1360kN 

= 340kN 
4 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



The weight of each pile is 
ALyP = 0.3 X 0.3 X 24 X (24) = 51.84 kN

�� 

i i 

Area of Length 

cross section 

Vc(P) = � = 
�Pp 

(24.5 X 106 ) 
= 3164.6 m/s 

(24/9.81) 

From Eq. (11.2), 

So 

or 

51.84 
= [

(mn )(24)
Jtan[

(mn )(24)
]340 (3164.6) (3164.6) 

0.1525 = [(mn )(0.00758)]tan[(mn )(0.00758)] 

From Figure 11.2, for LyP = 0.1525
CJo 

(0.36)(3164.6) :::::: 47_5 rad/s 24 
fn = 7.56Hz

IIEJ FRICTION PILES

11.3 Friction Piles 

Figure 11.4a shows a pile having a length of embedment equal to L and a radius 
of R. The pile is subjected to a dynamic load 

(11.6) 

It is possible to idealize the pile to a mass-spring-dashpot system, as shown in 
Figure 11.4b. The mass m shown in Figure 11.4b can be assumed to be the mass 
of the cap and machinery. The mathematical formulation for obtaining the stiff
ness (kz ) and the damping (cz ) parameters has been given by Novak (1977). In 
developing the theory, the following assumptions were made: 

1. The pile is vertical, elastic, and circular in cross section.
2. The pile is floating.
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11 I Machine Foundations on Piles
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Poisson's ratio=µ 

Density= p

Figure 11.4 Friction pile-vertical vibration 

3. The pile is perfectly connected to the soil.

! 
m 

(b) 

4. The soil above the pile tip behaves as infinitesimal, thin, independent linearly
elastic layers.

The last assumption leads to the assumption of plane strain condition. Refer
ring to Figure 11. 5, the dynamic stiffness and damping of the pile can then be 
described in terms of complex stiffness (Novak and El-Sharnouby, 1983) as 

(11. 7) 

The applied force Q and displacement z are related to Kin the following manner: 

where i=A 
K1 = real part of K = Re K 

K2 = imaginary part of K = Im K 

Hence, the spring constant is 

and the equivalent viscous damping is 

K2 
Cz = 

-

Q) 

ImK 

Q) 

(11.8) 

(11.9) 

(11.10) 
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Shear modulus= G 
Poisson's ratio=µ 

Density= p

-------- Pile radius= R
Area of cross section = A

Modulus of elasticity}= E of pile material P

11.3 Friction Piles 

Figure 11.5 Dynamic stiffness and damping constant for a single pile-vertical 
mode of vibration 

Combining Eqs. (11. 7), (11.9), and (11.10), 

K = kz + imcz (11.11) 

So, the force-displacement relation can be expressed as 

Q = (kz + imcz)z
or 

(11.12) 

where i = dz /dt
The relationships for kz and cz have been given by Novak and El-Sharnouby 

(1983) as 

and 

where 

k = ( EpA

)f z 
R 

zl 

( 
EPA J Cz = '1Gf p /z2 

EP = modulus of elasticity of the pile material
A = area of pile cross section 
G = shear modulus of soil 
p = density of soil 

fz1 ,fz2 = nondimensional parameters

(11.13) 

(11.14) 
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11 I Machine Foundations on Piles

The variations of /21 , and /z2 for end-bearing piles are shown in Figures 11.6 
and 11. 7. Similarly, the /21 and /z2 variations for floating piles are shown in 
Figures 11.8 and 11.9. 

Pile foundations are generally constructed in groups. The stiffness and damp
ing constants of a pile group are not simple summations of the stiffness and 
damping constant of individual piles. Novak (1977) suggested that when piles 
are closely spaced, the displacement of one pile is increased due to the displace
ment of all other piles and conversely, the stiffness and damping of the group are 
reduced. Hence, the stiffness of the pile group can be obtained as 

n 

Lkz 
kz(g) = 

1 

n 

La, 
r = I 

0.10 ..------.------.--------,-----.-----, 

Ep = 250 
G 

0.08 1-----+--l-----+------+----1------1 

20 40 
L 

R 

60 

500 

10,000 

80 100 

(11.15) 

Figure 11.6 Variation of /z1 with LIR and Ep /G for end-bearing piles (from 
Novak and El-Sharnouby, 1983) 

Source: Novak, M. and El-Sharnouby, B. (1983). "Stiffness Constants of Single Piles," Journal of 
the Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp. 961-974. With permission

fromASCE. 
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11.3 Friction Piles 
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Figure 11.7 Variation of /z2 with LIR and Ep /G for end-bearing piles (from 
Novak and El-Sharnouby, 1983) 

Source: Novak, M. and El-Shamouby, B. (1983). "Stiffness Constants of Single Piles," Journal of the 

Geotechnical Engineering Division, ASCE, Vol. 109, No. GTI, pp. 961-974. With permission from ASCE. 
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Figure 11.8 Variation of /z1 with LIR and Ep /G for floating piles (from Novak 
and El-Sharnouby, 1983) 

Source: Novak, M. and El-Shamouby, B. (1983). "Stiffness Constants of Single Piles," Journal of the 

Geotechnical Engineering Division, ASCE, Vol. 109, No. GTI, pp. 961-974. With permission from ASCE. 
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Figure 11.9 Variation of fz2 with L/R and Ep/G for floating piles (from Novak 
and El-Sharnouby, 1983) 
Source: Novak, M. and El-Sharnouby, B. (1983). "Stiffness Constants of Single Piles," Journal of 

the Geotechnical Engineering Division, ASCE, Vol . 109, No. GT7, pp. 961-974. With permission 

fromASCE. 

and 

where 

Cz(g) 

kz(g) = spring constant for the pile group 
cz(g) = dashpot constant for the pile group 

n = number of piles in the group 

(11.16) 

a, = the interaction factor describing the contribution of the 
rth pile to the displacement of the reference pile (that is, 
a1 = 1) 

Since no analytical solutions for the dynamic interaction of piles are avail
able at the present time, an estimate of a, can be obtained from the static solu
tion of Poulos (1968). This is shown in Figure 11.10. 
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Figure 11.10 Variation of interaction factor a, (from Poulos, 1968) 
Source: Poulos, H.G. (1968). "Analysis of the Settlement of Pile Groups," Geotechnique, 
Institution of Civil Engineers, London, Vol. 18, No. 4, pp. 449-471.

0 

For group piles, a cap is constructed over the piles (Figure 11.11 ). In the 
estimation of stiffness and damping constants, the contribution of the pile cap 
should be taken into account. The relationships describing the stiffness and geo
metric damping of embedment foundations are given in Chapter 5 as 

_ 
[

- Gs DJ -J 
kzccap) - Gro C1 + --S1 

G ro
(5.119) 

and 

2 �[- - Df�
sPs]Cz(cap) = ro \J pG C2 + S2 - --

ro Gp 
(5.120) 

Since the soil located below the pile cap may be of poor quality and it may 
shrink away with time, it would be on the safe side to ignore the effect of the cap 

- -

base-that is, C1 = 0 and C2 = 0. So 

and 

Cz( cap) = DJroS2..JGsPs 
Thus, for the group pile and cap, 

n 

Lkz 
kz(T) = �� -- + GsD fsl

La, 
r = l 

(11.17) 

(11.18) 

(11.19) 
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Figure 11.11 Group pile with pile cap 

and 

Cz(T) 

La, 
r = 1 

G 

p 

. .  ·." 

(11.20) 

where kzcn and czcn are the stiffness and damping constants for the pile group

and cap, respectively. 

The variations for S1 and S2 are given in Table 5.6. Once the values of kzcr) 

and Czcn are determined, the response of the system can be calculated using the
principles described in Chapter 2, as briefly outlined here. 

a. Damping ratio:

Cz(T) 
D = z 

2�kz(T)m

where m = mass of the pile cap and the machine supported by it. 

(11.21) 
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11.3 Friction Piles 

b. Undamped natural frequency:

In = _1 � k,(T)

2n m 

c. Damped natural frequency:

Im = ln -Jl - 2D; (for constant force excitation)

f, - In (for rotating mass-type excitation) 
m ,JI - 2D; 

d. Amplitude of vibration at resonance:

A = Qo 1 (for constant force excitation) 
z kz(T) 2D

z 
,JI - D;

A
= 

mie 1 
= (for rating mass-type excitation) 

z m 2Dz
,Jl - D; 

e. Amplitude of vibration at frequency other than resonance:

Qo 
kz(T) A=-;::===============

z ( (1) 2 )2 (1)2 

1-- +4D2
-

m� z m� 

(for constant force excitation) 

(11.22) 

(11.23) 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

m1e( � )' 
Az = ---;:::==m==m=n ====== (for rotating mass-type excitation) (11.29) (1 - m 2 )2 

+
4n2

m2

m 2 z m2
n n 

The nature of variation of A
z 

with OJ for floating piles and point-bearing 
piles is shown in Figure 11.12. From this figure, it can be seen that the relax
ation of the pile tips reduces both the resonant frequency and amplitude of 
vibration. 
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11 I Machine Foundations on Piles

--- Length= L = L1

Length = L = L2

L2>L1 

0 0 

;' 

b' 
I 

I 

a ,., .... ...

; I 
; I 

. .  ,.·: 

Angular frequency, m 

Figure 11.12 Nature of variation of Az with w for floating and point-bearing piles 

EXAMPLE 11.2 

A group of four piles is supporting a machine foundation, as shown in 
Figure 1 1.13. Determine kz(T) and C z(T). Given: E p = 21 X 10 6 kPa, G = Gs

=

28,000 kPa, y = Ys = 19 kN/m3
• Assume Poisson's ratio of soil,µ = 0.5. 

SOLUTION: 

Equivalent radius of pile cross section: 

Length of piles = L 

R = (0.3: 0.3r = 0.17m

12m: 

L 12 

R 0.17 
= 70.6 

Given Ep = 21 X 10 6 kPa; Gs = G = 28,000 kPa. 
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Section 

0.3m 
.·:· ... :_..t· · ... :_..·:·. . . · . · . · . . · . · . · · . . . . . . . . . . . . . . 

' 

Concrete pile cap 

Di
= 1.5 m Unit weight= 24 kN/m3 

Gs 

Ys (unit weight) 
""'.:""·-:·-·--·-...... -i-.--.� ---·-·--. ... -.-.·-·-'":"·' 

Figure 11.13 

So 

L= 12m 

T 
0.3m 

1.5m 

0.3m 
_!_ 

0.3m 

• D C• 
I+- 1.5 m __ ...._... 

Plan of pile cap 

21 X 106

28000 
750 

Referring to Figures 11.8 and 11.9, for Ep /G 
nitudes of fz1 and fz2 are 

r(unit weight) 

Concrete pile 
0.3 mx0.3 m 

0.3m 

750 andL/R 

fzl � 0.034 and /z2 � 0.06 

Hence, from Eqs. (11.13) and (11.14) 

11.3 Friction Piles 

70.6, the mag-
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11 I Machine Foundations on Piles

However, 

So 

kz = ( E;
A)lz i = [(21 X IO�i�

.3 X 0.3) 
}o.034)

= 378 X 106 N/m

28000 X 9.81 = 120_24 mis
19 

c 

= [(21 X 109 )(0.3 X 0.3)
J(0.06)

z 120.24 
= 94.311 X 104 N-s/m

In order to determine the stiffness and damping constants for group piles, 

Eqs. (11.15) and (11.16) can be used. However, La, needs to be considered 
r = 1 

first. This can be done by using Figure 11.10 and preparing the following table. 

Reference pile � Aa B C D 

Interacting pile 

A 1.00 0.54 0.48 0.54 

B 0.54 1.00 0.54 0.48 

C 0.48 0.54 1.00 0.54 

D 0.54 0.48 0.54 1.00 

2.56 2.56 2.56 2.56 

a Note: Reference pile A.

For interaction between piles A and A, S = 0 and S/2R = 0. So a, = 1. For
interaction between piles A and B, S = 1.5 m ,  2R = (2)(0.17) = 0.34 m, and
S/2R = 1.5/ 0.34 = 4.412. So a, � 0.54. Similarly, for interaction between piles
A and D, a, � 0.54. Between piles A and C, 

or 

_s - _;_'1_(1_.5_)2 _+_ (_1._5)_2 

= 6.23
2R 0.34 

2R - = 0.16 a, � 0.48
s 

The average value of La, = 2.56. Hence, using Eq. (11.15),
r = 1 
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kz(g) = 
( 4)(378 X 106 ) 

= 590.63 X 106 N/m 
2.56 

cc) =
(4)(943-11 X l03

) = 147.36 X 104 N·s/mz g 

2.56 

11.3 Friction Piles 

Again, for the contributions of the pile cap, kz(cap) [Eq. (11.17)] and Cz(cap) 

[Eq. (11.18)] need to be determined . Given: 

DJ = 1.5m; G = 28,000 kPa 

S1 = 2.7 (Table 5.6); S2 = 6.7(Table 5.6) 

r
o = �2.1

; 2.1 
= 1.185 m

From Eq. (11.17), 

kz(cap) = GsDJSI = (28000 X 103 ) X (1.5) X (2.7) 

= 113.4 X 106 Nim

Similarly, from Eq. (11.18), 

So 

= (1.5) X (1.l85) X (6_7) 
(28000 X 103 )(19 X 103 )

9.81 
= 277.33 X 104 N·s / m 

kz(T) = kz(g) + kz(cap) = 590.63 X 106 + 113.4 X 106

= 704.03 X 106 N/m = 704.03 X 103 kN/m 

Cz(T) = Cz(g) + Cz(cap) = 147.36 X 104 + 277.33 X 104

= 424.69 X 104 N · s/m 

EXAMPLE 11.3 

Refer to Example 11.2. If the weight of the machine being supported is 70 kN, 
determine the damping ratio . 

SOLUTION: 

Weight of the pile cap: 

(2.1)(2.1)(1.8)(24) = 190.512 kN = 190512 N 
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11 I Machine Foundations on Piles

Total weight of pile cap and machine: 

190.512 + 70 = 260.512 kN = 260512 N 

From Eq. (11.21), 

424.69 X 104

------;:::======== = 0.491 

2�(704.03 X 106 )(260512/9.81] 

Sliding, Rocking, and Torsional Vibration 

1111 SLIDING AND ROCKING VIBRATION

Novak (1974) and Novak and EI-Sharnouby (1983) derived the stiffness and 
damping constants for a single pile in a similar manner as described for the 
case of vertical vibration in Section 11.3. Following are the relationships for the 
spring and dash pot coefficients for single piles 

Sliding Vibration of Single Pile 

(11.30) 

(11.31) 

Table 11.1 Stiffness and Damping Parameters for Sliding Vibration (L/R > 25) 

Poisson's ratio of 
soil,µ 

0.25 

0.40 

Note: G = shear modulus of soil. 

(EplG) 
10,000 

2,500 

1,000 

500 

250 

10,000 

2,500 

1,000 

500 

250 

fxz fx2 

0.0042 0.0107 

0.0119 0.0297 

0.0236 0.0579 

0.0395 0.0953 

0.0659 0.1556 

0.0047 0.0119 

0.0132 0.0329 

0.0261 0.0641 

0.0436 0.1054 

0.0726 0.1717 
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11.4 Sliding and Rocking Vibration 

where EP = modulus of elasticity of the pile material 
IP = moment of inertia of the pile cross section 
Vs = shear wave velocity in soil 
R = radius of the pile 

The variations of fx1 and fx2 are given in Table 11.1, which is based on the anal
ysis on Novak (1974) and Novak and El-Sharnouby (1983). 

When piles are installed in groups and subjected to sliding vibration, the 
spring constant and the damping coefficient of the group can be given as 

and 

where 

n 

Lkx 
kx(g) = 

1 

n 

L aL(r) 
r = l 

n 

Lex 
Cx(g) = 

1 

n 

L aL(r) 
r = l 

aL(r) = interaction factor (Poulos, 1971) 

kx(g) = spring constant for the pile group 
cx(K) = damping coefficient for the pile group 

n = number of piles in the group. 

The variation of aL(r) is given in Figure 11.14.

(11.32) 

(11.33) 

As in the case of vertical vibration, the effect of the pile cap (Figure 11.15) 
needs to be taken into account in the determination of total stiffness and damp
ing constant. In Eqs. (5.122) and (5.123), the relationships for kx and ex for
embedded foundations have been described as 

2 r;:r5[- - Df�sPs] Cx = ro '\/PG Cx2 + Sx2- --
ro Gp 

- -

Assuming Cx1 = 0 and Cx2 = 0 

and 

(5.122) 

(5.123) 

(11.34) 

(11.35) 
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11 I Machine Foundations on Piles

aL(r) 0.4

0.3 ---...

Flexible 

pile 

0.2 

Direction of load 
0- - - - - - - -

' 

/3 ' 

'o 

-
-

-...
...

... 

, ... ...
, ...

... 

' 
' 

...... 

2 

...... 5... ... 
--

---

0.1 1-----------+------+-----1--1 

0 .__ ____ .__ ___ ........ ____ _,_ ____ .....____, 

20 40 60 

Departure angle, /3 ( deg)

Figure 11.14 Variation of aL(r) (from Poulos, 1971) 

80 90 

Source: Poulos, H.G. (1971). "Behavior of Laterally Loaded Piles: II. Pile Groups," Journal of the 

Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM5, pp. 733-751. With permission 

fromASCE. 

Hence, for the group pile and cap, 

kx(T) (11.36) n 

L aL(r)
r = 1 

and 

Cx(T) (11.37) n 

L aL(r)
r = l 
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Pile cap ····t···
·:.· .. ·. ··:.· .. ·. 

DJ --- Diameter= 2r
0

L 

11.4 Sliding and Rocking Vibration 

G 

p 

. .. . :- .'; 

Figure 11.15 Effect of pile cap on stiffness and damping constants-sliding 
vibration 

The damping ratio Dx for the system can then be determined as 

(11.38) 

where m = mass of the pile cap and the machine supported. The damped natural 
frequency fm is given as 

fm 
= 2� [ � k:) ] [ ..)1 - 2D; J ( for constant force excitation) (11.39)

and 

f, = 
_l � kx(T) Im

n 

2n .jl - 2D;
(11.40) 

The amplitudes of vibration can be calculated using Eqs. (5.58), (5.59), (5.60), 
and (5.61). While using these equations, kx needs to be replaced by kxcn · 

Rocking Vibration for Single Pile 

(11.41) 
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11 I Machine Foundations on Piles

(11.42) 

The terms Ep, lp , Vs and R have been defined in relation to Eqs. (11.30) and 
(11.31). The numerical values of /81 and /82 obtained by Novak (1974) and 
Novak and El-Sharnouby (1987) are given in Table 11.2. 

Table 11.2 The Stiffness and Damping Parameters for Rocking Vibration 
(LIR > 25) 

Poisson's ratio of 

soil,µ (Ep/G) !01 !02

0.25 10,000 0.2135 0.1577 

2,500 0.2998 0.2152 

1,000 0.3741 0.2598 

500 0.4411 0.2953 

250 0.5186 0.3299 

0.4 10,000 0.2207 0.1634 

2,500 0.3097 0.2224 

1,000 0.3860 0.2677 

500 0.4547 0.3034 

250 0.5336 0.3377 

Note: G = shear modulus of soil. 

For coupling between horizontal translation and rocking, the cross stiffness 
and damping constants are as follows: 

(11.43) 

(11.44) 

The numerical values for fxoi and fx82 are given in Table 11.3, which is based 
on the works of Novak (1974) and Novak and El-Sharnouby (1983). 

Table 11.3 Values of fxoi and fxo2

Poisson's ratio of 
soil,µ (Ep/G) 

0.25 10,000 

2,500 

1,000 

500 

250 

fxot fxo2 

-0.0217 -0.0333

-0.0429 -0.0646

-0.0668 -0.0985

-0.0929 -0.1337

-0.1281 -0.1786
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11.4 Sliding and Rocking Vibration 

Poisson's ratio of 
soil,µ (Ep/G) fx91 fx92 

0.4 10,000 -0.0232 -0.0358

2,500 -0.0459 -0.0692

1,000 -0.0714 -0.1052

500 -0.0991 -0.1425

250 -0.1365 -0.1896

Note: G = shear modulus of soil. 

For group piles the stiffness ke(g) and damping ce(g) constants can be written as 

ke(g) = L [ ke + kzx; + kxZJ - 2Zckxe ] 

The terms x, and Zc are defined in Figure 11.16. Similarly, 

Ce(g) = L [ Ce + CzX; + CxZJ - 2ZcCxe ] 
1 

(11.45) 

(11.46) 

The stiffness keccap) and damping Ce(cap) for the pile cap can be obtained from the 
following equations (Prakash and Puri, 1988): 

koccap) = G,r
0
2

D
1S01 + G,r

0
2

D
1 [ �2 + ( �']' - o( �:) Jsxt (11.47) 

and 

where r0 = equivalent radius of the pile cap 
8 = D1 

ro 

Thus, the total stiffness kecT) and damping cecT) constants are 

ke(T) = keud + ke(cap)

and 

(11.48) 

(11.49) 

(11.50) 

(11.51) 

Once the magnitudes of kecT) and cecT) are determined, the response of the 
system can be calculated in the same manner as outlined in Chapter 2 and 
Section 5.5. 
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Section 

· . ·  . . · . · . · 
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p 

Figure 11.16 Definition of parameters in Eqs. (11.45) and (11.46) 

For convenience, this is outlined here as well. 
a. Damping ratio:

De =
Ce(T) 

2�kecT)Ig

(11.52) 

where I
!{ 

= mass moment of inertia for the pile cap and the machinery about 
the centroid of the block. Referring to Figure 11.17a, 

l
g 

= mass moment of inertia about they axis 

= m (L2 + h2)
12 

and, similarly, ref erring to Figure 11.1 7b, 

(11.53a) 
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11.4 Sliding and Rocking Vibration 

lg = mass moment of inertia about they axis 

= m (3ri
2 + h2)

12 ° 

b. Undamped natural frequency:

c. Damped natural frequency:

= �k8(T)

lg 

_1 �k8(T)

2n lg

fm = fn ,Jl - 2Di (for constant force excitation) 

.J 
fn (for rotating mass-type excitation)

1- 2Dj

(11.53b) 

(11.54) 

(11.55) 

(11.56) 

(11.57) 

The amplitude of vibration can be determined by using Eqs. (5.46), (5.4 7), 
(5.48), and (5.49). 

----L--------

Mass=m 

/; _____ _ 

y. 
y 

C-G

, 
, 

1, 

,'1

.,,- - - - - - -

I ) - - -

z 

(a) 

X 

Figure 11.17 Mass moment of inertia IF{

, 

, 

y , 
, 

2,0

IMass=m 

h 

C·G 
.,.- - - - - - - - X , I 

, 
, 

, 
, 

I 

---�----
I 

\ 

z 

(b) 
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11 I Machine Foundations on Piles

EXAMPLE 11.4 

Refer to Example 11.2. Determine kx(T) and cx(T) for the sliding mode of vibra
tion. Assume Poisson's ratio of soil, µ = 0.25. 

SOLUTION: 

Stiffness and damping constants for single pile: From Eqs. (11.30) and (11.31), 

and 

Given Ep = 21 X 106 kPa; R = 0.17 m.  

/p = 1t R4
= 1t (0.17)4

= 6.54 X 10-4m4

4 4 

V = 

{Q 
= 

28000 X 9.81 
= 120_24 m/ s 

s �p 19 
EP 

= 

21 X 106

= 7 50 
G 28,000 

From Table 11.1, forµ = 0.25 and Ep/G = 750, fx 1 = 0.027 and fx2 = 0.068. So 

kx = 

Eplp 
f = 

(21 X 106 X 103 )( 6.54 X 10-4 )
(0.027) 

R3 xi
(0.17)3

= 75.48 X 106 N/m 

c = 

Ep/p 
f = 

(21 X 106 X 103 )( 6.54 X 10-4 ) 
(0.068)x 

R3vs 

x2

( 0.17)2 (120.24) 
= 268.76 X 103 N·s/m 

Stiffness and damping constants for group pile: From Eqs. (11.32) and (11.33), 

Lkx 
kx(g) = -n l=------

L aL(r)
r = l
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11.4 Sliding and Rocking Vibration 

and 

Cx(g) 
= n 

L aL(r) 
r = 1 

To find aL(r) with A as the reference pile, the following table can be prepared 
using Figure 11.14. Assume piles to be flexible. 

Reference pile � 

Interacting pile
J, 
A 

B 

C 

D 

/J(deg) 

0 

0 

45 

90 

A 

s 

2R 

0.00 

4.41 

6.24 

4.41 

1.00 

0.32 

0.27 

0.18 

1.77 

Similarly, for the other reference piles, L aL(r) will be 1.77. So, the average 
n

value of LaL(r) = 1.77. Thus, 
r=l 

kx(g) = (4)(75.48 X 106

) = 170.58 X 106 N/m
1.77 

c c ) = ( 4)(268·76 X l03 ) = 607.37 X 103 N·s/mX g 

1. 77

Stiffness and damping for pile cap: From Eqs. (11.34) and (11.35), 

and 

- -

From Chapter 5 withµ= 0.25, Sx1 = 4.0 and Sx2 = 9.10. So 
kx(cap) = (28000 X 103 ) X (1.5) X ( 4.0)

= 168 X 106 N/m 

{28000 X 103 ) X {19 X 103 )
Cx(cap) = (1.5) X (1.185) X (9.1)

9.81 
= 3.77 X 106N·s/m 
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11 I Machine Foundations on Piles

Total stiffness and damping: 

kx(T) = kx(g) + kx(cap) = 170.58 X 106 
+ 168 X 106

= 338.58 X 106 N/m 

Cx(T) = Cx(g) + Cx(cap) = 607.37 X 103 
+ 3.77 X 106

= 4.38 x 106 N ·s/m

EXAMPLE 11.5 

In Example 11.4, if the weight of the machine being supported is 90 kN, 
determine the damping ratio. 

SOLUTION: 

Weight of the pile cap: 190.512 kN 

Total weight of the pile cap and machine: 

190.512 + 90 = 280.512 kN = 280512 N 

From Eq. (11.38), 

4.38 X 106

----;========== = 0.705 
2�(338.58 X 106 )[280512/(9.81)] 

EXAMPLE 11.6 

Ref er to Example 11.2. Determine ke(n and ce(n for the rocking mode of 
vibration.  Assume Poisson's ratio of soil to be 0.25. 

SOLUTION: 

Stiffness and damping constants for single pile: From Eqs. (11.41) and (11.42), 

and 

Ep/p 
I'ke = R 101

Ep = 21 X 106 

--- =750
G 28,000 
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11.4 Sliding and Rocking Vibration 

From Table 11.2, forµ = 0.25 and Ep lG = 750, the values of f81 and frn are 
0.39 and 0.275, respectively. 

k = 
(21 X 106 X 103) X (6.56 X 10-4)(0.39)8 0.17 

= 31.60 X 106 N·m/rad 

c = 

(21 X 106 X 103) X ( 6.56 X 10-4)
(0.275) 8 120.24 

= 31.51 X 103 N·m·slrad 
Cross-stiffness and cross-damping constants: From Eqs. (11.43) and (11.44), 

Ep/p kxo = R2 
fxol

Eplp Cxo = R fx82 

Vs 

From Table 11.3, fxo1 = -0.076 and fxo2 = -0.115. Thus, 

k = 
(21 X 106 X 103 ) X ( 6.54 X 10-4) 

(-0.076)
x8 (OJ 7)2 

= -36.23 X 106 Nlrad

c = 
(21 X 106 X 103 )(6.54 X 10-4){-0.ll5)

xO 

( 0.17)(120.24) 

= -77.50 X 103 N·slrad
Stiffness and damping constants for pile group: From Eqs. (11.45) and (11.46), 

and 

n 

ko(g) = L [ ko + kzx; + kxZ; - 2Zckxo
] 

1 

n 

Co(g) = L[ Co + CzX; + CxZ; - 2ZcCxo
] 

1 

From this problem, 
n = 4 

k8 = 31.60 X 106 N·m/rad 
kz = 378 X 106 Nlm (from problem 11.2) 
x, = (1.512) = 0.75 m 
kx = 75.58 X 106 Nim (from Problem 11.4) 

kxo = -36.23 X 106 Nim

Zc = 0.9m 
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11 I Machine Foundations on Piles

So 

ke(g) = 4[31.6 X 106 + (378 X 106 )(0.75)2

+ (75.58 X 106 )(0.9)2 - (2)(0.9)(-36.33 X 106 )

= 1.48 X 109 N·m/rad 
Similarly, with 

n = 4 

c8 = 31.51 X l03 N·m·s/rad 
Cz = 943.11 X 103 N·s/m (from problem 11.2) 
Xr = 0.75m 

Cx = 268.76 X 103 N·s/m (from problem 11.4) 
Cxe = -77.50 X 103 N·s/rad
Zc = 0.9m

the result is 

Ce(g) = 4[(31.51 X 103 ) + (943.11 X 103 )(0.75)2

+ (268.76 X 103 )(0.9)2 - (2)(0.9)(-77.5 X 103 )]

= 3.68 X 106 N·m·s/rad 
Stiffness and damping of pile cap: From Eq. (11.47), 

where 

So 

ke(oapl = G,r6D1Se1 + G,r6D1[ �
2 + ( !' J - 8( !') Jsx,

8 = DJ = 

l.5
= 1.266 

r0 1.185 

ke(cap) = (28000 X 103 )(1.185)2 (1.5)(2.5)+ (28000 X 103 )(1.185)2 (1.5)x

[
c1.266)2 + ( o.9 )

2 

- c1.266)( o.9 )Jc 4)
3 1.185 1.185 

= 182.73x l06 N·m/rad 
Again, from Eq. (11.48) 

Ce(oapl = 8r04
� {s02 + [ �2 + ( !) -

8( !') Jsx2

} 
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11.5 Torsional Vibration of Embedded Piles 

or 

Ce(cap) (1.266)(1.185)4 �(28000 X 10 3 )(19 X 103 )/9.81 

{1.8 + [(1.266)
2 

+ ( o.9 )2 - o.266)( o.9
)]c9.1)} 3 1.185 1.185 

1.84 X 106 N·m·s/rad 

Total stiffness and damping: 

ke(T) = ke(g) + ke(cap) = 1.48 X 109
+ 182.73 X 106

= 1.66 X 109 N·m/rad

Ce(T) = Ce(g) + Ce(cap) = 3.68 X 106 
+ 1.84 X 10 6

= 5.52 X 106 N·m·s/rad 

IIIJ TORSIONAL VIBRATION OF EMBEDDED PILES

Torsional vibration of an embedded pile was analyzed by Novak and Howell 
(1977) and Novak and El-Sharnouby (1983). According to these analyses, the pile 
(Figure 11.18) is assumed to be vertical, circular in cross section (radius = R),
elastic, end-bearing, and perfectly connected to the soil. The soil is considered to 
be a linear, viscoelastic medium with frequency-independent material damping 
of the hysteretic type. Referring to Figure 11.18, the pile is undergoing a complex 
harmonic rotation around the vertical axis, which can be described as 

where 

a(z,t) = a(z)eimt

a( z) = complex amplitude of pile rotation at a depth z
i=A 

(11.58) 

The motion of the pile is resisted by a torsional soil reaction. The elastic soil 
reaction setting on a pile element dz can then be given as 

where 
GR2 (Sa1 + iSa2 )[a(z,t)]dz 

Sa1 ( ao ) = stiffness parameter 

= 2n(2 - a JoJ1 + YoYi J 0 
Jr + 11?

Sa2 (ao ) = damping parameter 
4 

(11.59) 

(11.60) 

(11.61) 
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Figure 11.18 Torsional vibration of embedded pile

a0 = dimensionless frequency = mR�
R = pile radius
G = shear modulus of soil
p = density of soil

J0 (a0 ), J1 (a0 ) = Bessel functions of the first kind and of order
0 and 1, respectively

Yo ( a0 ), Yi ( a0 ) = Bessel functions of the second kind and of order
0, and 1, respectively

The parameters Sa1 and Sa2 also depend on the material damping of the soil.It was mentioned in Chapter 5 that the material damping is more important fortorsional mode of vibration than any other. This damping can be included byaddition of an out-of-phase complement to the soil shear modulus, or 

where G2 tan8 = -G1 

(11.62)

G1, G2 = real and imaginary parts, respectively, of the complexshear modulus 
8 = loss angle 
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11.5 Torsional Vibration of Embedded Piles 

Thus, the term Gin Eq. (11.59) can be replaced by G*. Also G* enters Eqs. (11.60) 
and (11.61) through the dimensionless frequency a0 • Using this method of anal
ysis, Novak and Howell (1977) showed that the stiffness and damping constants 
of fixed-tip single piles can be given as 

lka = 

G
;
J 

fat I (11.63) 

and 

GpJ 
Ca = �G/p fa2 (11.64) 

where G
P = shear modulus of the pile material 
J = polar moment of inertia of the pile cross section 

la1,la2 = nondimensional parameters 

The variations of /a1 and !a2 for timber piles (p / PP = 2) are shown in 
Figures 11.19 and 11.20. Figures 11.21 and 11.22 show similar variations for 
concrete piles (p/ PP = 0.7). It is important to note the following: 

1. For a given type of pile, the nondimensional parameter fa2 is relatively more
frequency dependent than !al·

2. Novak and Howell (1977) showed that the displacement of slender piles rap
idly diminishes with increasing depth and varies to a lesser degree with fre
quency. So the effect of the tip condition is less important for slender piles in
which the tip is fixed by the soil.

3. The pronounced effect of material damping may be seen in Figures 11.20
and 11.22. The value of tan 8 = 0.1 is of typical order in soil. At low fre
quencies the material damping significantly increases the torsional damping
of the pile. (Compare fa2 values for tan 8 = 0.1 to those for tan 8 = 0 for a
given value of a0).

Group Piles Subjected to Torsional Vibration 

If a group pile is subjected to torsional vibration as shown in Figure 11.23, the 
torsional stiffness [kac .,d] and damping [ca(R')] constants can be expressed as 

n 

ka(g) = L[ka + kx {x; + y;)] (11.65) 
1 

and 

n 

Ca(g) = L[ Ca + cx {x; + y;)] (11.66) 
1 
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Figure 11.19 Variation of !ai for timber pile p/p = 2; p = density of pile 
p p 

material (from Novak and Howell, 1977) 

Source: Novak, M. and Howell, J.F. (1977). "Torsional Vibrations of Pile Foundations," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT4, pp. 271-285. 

With permission from ASCE. 

The expressions for ka and ca are given in Equations (11.63) and (11.64), 
and kx and ex are the stiffness and damping constants for sliding vibration 
[Eqs. (11.30) and (11.31)]. Note that the contribution of the sliding com onent 
for a pile in the group increases with the square of the distance (R, = x; + y;) 
from the reference point . So the torsion of piles in a group is more important 
for a small number of large-diameter piles than a larger number of small
diameter piles. 
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Figure 11.20 Variation of la2 for timber pile p/p = 2; p = density of pile 
p p 

material (from Novak and Howell, 1977) 
Source: Novak, M. and Howell, J.F. (1977). "Torsional Vibrations of Pile Foundations," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT4, pp. 271-285. 

With permission from ASCE. 

The contribution of the pile cap to the stiffness and damping constants can 
be obtained from Eqs. (5.126a) and (5.126b). Assuming Ca1 and Ca2 in those 
equations to be equal to zero 

(11.67) 

and 

(11.68) 
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Figure 11.21 Variation of !a1 for concrete pile p/ p = 2; p = density of pile 
. f 1 

p p 

matenal ( rom Novak and Howe 1, 1977) 
Source: Novak, M. and Howell, J.F. (1977). "Torsional Vibrations of Pile Foundations," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT4, pp. 271-285. 

With permission from ASCE. 

Thus, the total stiffness [kacT)] and damping [cacT)] constants are as follows. 

ka(T) = ka(g) + ka(cap)

= L [ ka + kx ( x; + y;)] + D JGsra2 Sal 
(11.69) 
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Figure 11.22 Variation of la2 for concrete pile p/p = 0. 7; p = density of pile 
p p 

material (from Novak and Howell, 1977) 
Source: Novak, M. and Howell, J.F. (1977). "Torsional Vibrations of Pile Foundations," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT4, pp. 271-285. 

With permission from ASCE. 

Ca(T) = Ca(g) + Ca(cap)

= L[ca + cx (x; + y;)] + D1rJSa2)GsPs

Following are the relationships for calculation of response of the system. 

(11. 70) 
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Figure 11.23 Group pile subjected to torsional vibration 

a. Damping ratio:

Ca(T) 

2�ka(T)Jzz 
(11.71) 

where Jzz = mass moment of inertia of the pile cap and machinery about a 
vertical axis passing through the centroid. Referring to Figure 11.24a, 
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Figure 11.24 Mass moment of inertia lzz

Jzz = mass moment of inertia about the z axis 

= m 
(L2 + B2)

12 
Referring to Figure 11.24b, 

mra2 
Jzz = mass moment of inertia about the z axis =

2 
b. Undamped natural frequency:

c. Damped natural frequency:

Wn = 

�ka(T)

fzz 

fm = fn -Jl - 2D& (for constant force excitation) 

f, - In (for rotating mass-type excitation) m ,,jl - 2D& 

I 
h 

X 

(11. 72) 

(11.73) 

(11.74) 

(11.75) 

(11. 76) 

(11. 77) 

d. Amplitude of vibration at resonance: Equations (5.68) and (5.69) can be used
to calculate the amplitude of vibration. [Replace ka in Eq. (5.68) by ka(T) ·]
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11 I Machine Foundations on Piles

PROBLEMS 

11.1 A machine foundation is supported by six piles, as shown in Figure 
P 11.1. Given: 

Figure P11.1 

Type: concrete 

Size: 405 mm X 405 mm in cross section 

Length: 30 m 

Unit weight of concrete = 23 kN/m3

Modulus of elasticity= 21 X 106 kPa 

I 
. . -:·i .. -:·· 

30m 

L_ 

• 

• 

I 

• 

• 

I 
T 

Machine and foundation 

Weight = 2030 kN 

I 

Weak soil 

Bedrock 

• 

• 

Determine the natural frequency of the pile-foundation system for 

vertical vibration. Use the procedure outlined in Section 11.2. 

11.2 A wooden pile is shown in Figure Pl 1.2. The pile has a diameter of 

230 mm. Given: Ep = 8.5 X 106 kPa. Determine its stiffness and damp

ing constants for 
a. vertical vibration,

b. sliding, and

c. rocking vibration.
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15m 

Figure P11.2 

Soil 

G= 20.7 x 103 kPa 

Unit weight= 17.8 kN/m3

µ=0.25 

Problems 

11.3 Refer to Problem 11.2. Assume that the Poisson's ratio for wooden piles 
is 0.35. Determine the approximate stiffness and damping constants for 
the pile for torsional vibration. 

11.4 Solve Problem 11.2 assuming that the piles are made of concrete with 
Ep = 21 X 106 kPa. 

11.5 Refer to Problem 11.4. Assume that the Poisson's ratio for concrete piles 
is 0.33. Determine the approximate stiffness and damping constants for 
the pile for torsional vibration. 

11.6 - 11.11 For Problems 11.6-11.11, refer to the accompanying figure. 
Given: 

Pile 

Pile cap 

L = 25 m 

Size = 380 mm X 380 mm in cross section 

E 
P 

= 21 X 106 kPa 

Poisson's ratio, µ
p
ile 

= 0.35 

B = 3.4 m 

x' = 0.5 m 

D1 
= 2 m

h = 3 m

The pile cap is made of concrete. Unit weight of concrete is 23 kN/m3. 

Soil 

G = Gs 
= 24,500 kPa 

Unit weight, r = Ys 
= 18.5 kN / m3

Poisson's ratio,µ = 0.25 
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11 I Machine Foundations on Piles

11.6 Determine kz(g) and cz(g) for the pile group for the vertical mode of 

vibration. 

11.7 Determine the total stiffness and damping constants kz(T) and cz(T) for 

the vertical mode of vibration. 

11.8 Determine kx(g) and Cx(g) for the pile group for the horizontal mode of 
vibration. 

11.9 Determine the total stiffness and damping constants kx(T) and cx(T) for 

the horizontal mode of vibration. 

11.10 Determine ke(g) and ce(g) for the pile group for the rocking mode of 

vibration. 

11.11 Determine the total stiffness and damping constants ke(n and ce(n for 
the rocking mode of vibration. 

Figure P11.6-P11.11 

Machine 

h 
Pile cap 

L 

i 
----B-----

x' 

t 

i 
x' 

• 

• 

t�I x' I-+-

• 

G 

r 

µ 
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Seismic Stability of Earth 

Embankments 

lfll INTRODUCTION

Sudden ground displacement during earthquakes induces large inertial forces 

in embankments. As a result, the slope of an embankment is subjected to sev
eral cycles of alternating inertia force. There are several recorded cases in the 
past that show severe damage or collapse of earth embankment slopes due to 
earthquakes-induced vibration (e.g., Ambraseys, 1960; Seed, Makdisi, and 
DeAlba, 1978). These damages include flow slides of saturated cohesionless soil 
slopes and slopes of cohesive soil with thin lenses of saturated sand inside them. 
Such flow slides are due to liquefaction of saturated sand deposits. Fundamental 
concepts of liquefaction were presented in Chapter 10. Other types of damages 

include collapse or deformation of dry or dense slopes in sand and also in cohesive 
soils. In the following sections, the analysis for the stability of earth embankments 
for these types of slopes under earthquake loading conditions will be treated. It 

will be assumed that these soils experience very little reduction in strength due to 
cyclic loading. This is what is generally known as inertial stability analysis. 

In general , deformations suffered by an earth embankment during a strong 
earthquake may take several forms, such as those shown in Figure 12.la, b, and c. 
Figure 12.la shows a type of deformation pattern that may be concentrated in a 
narrow zone with a definite slip surface. However, substantial deformation may 
occur without the development of a slip surface, as shown in Figure 12.1 b. In 
cohesionless slopes, the slip surface is usually a plane, as shown in Figure 12. lc 
(Seed and Goodman, 1964). 

EB FREE VIBRATION OF EARTH EMBANKMENTS

For a proper evaluation of the seismic stability of earth embankments, it is nec
essary to have some knowledge of the vibration of embankments due to earth
quakes, with some simplifying assumptions. This can be done by the use of 

one-dimensional shear slice theory (Mononobe, Takata, and Matumura, 1963; 
Seed and Martin, 1966). Figure 12.2 shows an earth embankment in the form of 
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12.2 Free Vibration of Earth Embankments 

(a) 

(c) 

Figure 12.1 Deformation of earth embankments 

(b) 

�------------------- X 

Rigid foundation material 

z 

Figure 12.2 Free vibration of an earth embankment 

a triangular wedge. The height of the wedge is H. Now, the following assump

tions will be made: 

1. The earth embankment is infinitely long;
2. The foundation material is rigid;

3. The width-to-height ratio of the embankment is large. This means that the
deformation of the embankment is due only to shear; and

4. The shear stress on any horizontal plane is uniform.
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12 I Seismic Stability of Earth Embankments 

Regarding the first assumption made, it can be shown that when the length
to-height ratio of an embankment is four or greater, then effect of end restraints 
on the natural frequencies of vibration is negligible. So, for all practical purposes 
most of the embankments can be assumed to be infinitely long. 

Consider an elementary strip of thickness dz, as shown in Figure 12.2. The 
forces acting on this elementary strip (per unit length at right angles to the sec
tion shown) are 

a. Shear force:

du 
Fi= G-X1 

dz 

b. Shear force:

dFi F; =Fi+ -dz 
dz 

c. Inertia force:

where 

I = (mass)(acceleration) 

= -.X1.dz - = pAz-dz 
(r 

J 
d2 u d2 u 

g dt2 dt2 

G = shear modulus of the embankment material 
u = displacement in the x direction
g = unit weight of embankment material 
A = a constant of proportionality 

p = ylg = density of the embankment material 

Note that 

So 

or 

F;-Fi=I 

[ du d ( du J ] [ du ] d2 u 
AG-z + AG- z- dz - AG-z = pAz-dz 

dz dz dz dz dt2 

(12.1) 

In the preceding equation, the viscous damping force has been neglected, 
and the boundary conditions for solving it are as follows: 

a. ou/oz = 0 at z = 0 for all values oft; and

b. u = 0 at z = H for all values of t. 
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12.3 Forced Vibration of an Earth Embankment 

The solution to Eq. (12. 1) is 

where 

u(z,t) = 

n
i

oo 
[An sinmnt + Bn COS<Ont]Jo (!3n _!_) 

n= 1 H 
(12.2) 

An,Bn = constants 

Thus, 

JO = Bessel function of first kind and order 0 

f3n = the zero value of the frequency equation JO ( ronH X l) = 0 

(So /31 = 2.404,/32 = 5.22,/33 = 8.65, ... ) 
<On = undamped natural circular frequency of embankment in the 

nth mode of vibration = 

f3n {Q 
HVp 

<01 = 

/31 fQ 
= 

2.404 fQ 
HVp H VP 

<02 = 

5.52 fQ 
H VP 

(03 
= 

8.65 fQ 
H VP 

(12.3) 

Here it is worth noting that implicitly the shear modulus is assumed to be 
constant throughout the height of the embankment, which is not true. However, 
for an accurate estimation of m1 , this is a good assumption. 

lfll FORCED VIBRATION OF AN EARTH EMBANKMENT

Figure 12.3 shows a triangular earth embankment being subjected to a horizon
tal ground motion, u

g
(t). The equation of motion for the analysis of the vibra

tion of an embankment for such a case can be given as (Seed and Martin, 1966) 

a2 u _ G
[

a2 u + _!_ au
] = 

a2 u
g (l2.4) 

at2 p at2 z at at2

The solution to Eq. (12.4) can be given as 

u(z,t) = "f 210 [f3n (z/ �)] J' ii, sin[ro
n 
(t - t')]dt' 

n = 1 mnf3nJ1 f3n O 
(12.5) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



12 I Seismic Stability of Earth Embankments 

�-------------x 

Rigid foundation material Ug (t) 

z 

Figure 12.3 Forced vibration of an earth embankment 

where 11 = Bessel func tion of the first order. 
Like all materials, soil possesses the property of damping out vibrations. 

The viscous damping fac tor of soil in the embankment has not been included 
in Eqs. (12.4) and (12.5). If viscous damping (see Chapter 2) is included, then 
Eq. ( 12. 5) will be modified to the form 

(12.6) 

where Dn = damping factor in the nth mode 

rod = wn ,Jl - D; = damped natural angular frequency in the nth mode 

The relative velocity, u(z,t), and acceleration, u(z,t), at any depth z and time t 
can be ob tained by proper differentiation of Eq. (12.6). The absolute accelera
tion can be given by 

ua (z,t) = u(z,t) + ug
(t) (12. 7) 

where ua (z,t) = absolute acceleration. For the case of zero damping (Dn = 0), 
it can be shown from Eq. (12.4) that the modal contribution to the absolute 
acceleration can be given by 

(12.8) 

For small values of damping (that is, Dn ::::::: 0), rod ::::::: Wn. Thus, from Eq. (12.6), 
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12.4 Velocity and Acceleration Spectra 

The preceding equation can be rewritten as 

where 

n =oo 

Ua ( Z, t) = L Uan { Z, t) 
n = 1

Uan (z,t) = Wn1Jn (Z )Vn (t) 

w = P.tn H p 

2Jo [/Jn (z I H)] 
1Jn (z) =

/JnJ1 (/Jn) 

(12.9a) 

(12.9b) 

(12.10) 

(12.11) 

(12.12) 

(12.13) 

For a given ground acceleration record [ii
g
(t)] and embankment, Eq. (12.9) can 

be programmed in a computer and the variation of the absolute acceleration 
with depth can be obtained. An example for such a case is shown in Figure 12.4. 
Figure 12.4b shows the variation of acceleration of a 30 m high embankment with 
time that has been subjected to a ground acceleration, as shown in Figure 12.4a. 

lfll VELOCITY AND ACCELERATION SPECTRA

The term Vn (t) given by Eq. (12.13) is a function of the ground acceleration (u
g 
), 

damping (Dn ) ,  natural frequency (mn ) and the time (t). For a given earthquake 
record, the maximum value of Vn (t) that will correspond to a given value of W n

can easily be determined. This is referred to as the spectral velocity, Svn, where 

(12.14) 

The spectral velocities, Svn, corresponding to various values of W n can be calcu
lated and plotted in a graphical form (for a given value of Dn). This is called a 
velocity spectrum. Note that Svn has the units of velocity. Similar plots can be 
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Figure 12.4 (a) Accelerogram of el Centro, California, earthquake, 
May 18, 1940-N-S component; (b) Acceleration distribution at 0.1-s 
intervals for 30-m-high dam subjected to El Centro earthquake (from Seed 
and Martin, 1966) 

Source: Seed, H.B., and Martin, G.R. (1966). "The Seismic Coefficient in Earth Dam Designs," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM3, pp. 25-58. 

With permission from ASCE. 
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12.4 Velocity and Acceleration Spectra 

made for a number of values of the damping ratio. Figure 12.5 shows the nature 
of the plot of Svn with the natural period. Note that 

where Tn = natural period. 

Tn =
21t

(J)n 

(12.1 5) 

For a given mode of vibration of an embankment, the maximum value of 
the acceleration can be given as 

(12.16) 

Again, keeping in mind that acceleration is equal to natural frequency times the 
velocity, Eq. (12.16) can be rewritten as 

(12.17) 

where San = spectral acceleration = m nSvn

The expression for 1Jn (z) is given by Eq. (12.12). Since the values of f3n (for 
n = 1,2,3, ... ) are known, 1Jn (z) can easily be calculated. The variation of 1Jn (z) 
for n = 1,  2, 3 is shown in Figure 12.6. Thus, the spectral acceleration for a given 
value of Dn and OJn ( or Tn) can be calculated. A plot of San versus Tn is referred to 
as the acceleration spectrum. Figure 12. 7 shows an example of an acceleration 
response spectra. 

150 
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120 

>, 90 
..... 
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s 
60 

-�

30 
Damping, D = 0.20 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Natural period (s) 

Figure 12.5 Velocity response spectra for El Centro (1940) earthquake (from 
Seed, 1975) 

Source: Copyright 1975. From Seed, H.B. (1975). "Earthquake Effects on Soil-Foundation 

System," in Foundation Engineering Handbook, eds. H.F. Winterkorn and H.Y Fang . Reproduced 

by permission of Taylor and Francis Group, LLC, a division of Informa plc. 
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n=l 

1.0 �---�-----------

-2 -1 +l +2

Figure 12.6 Variation 1Jn(z) with z/H [Eq. (12.12)] (from Seed and Martin , 1966) 

Source: Seed, H.B., and Martin, G.R. (1966). "The Seismic Coefficient in Earth Dam Designs," 

Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM3, pp. 25-58. 

With permission from ASCE. 

ED APPROXIMATE METHOD FOR EVALUATION OF

MAXIMUM CREST ACCELERATION AND NATURAL 

PERIOD OF EMBANKMENTS 

Based on the theory presented in Section 12.3, Makdisi and Seed (1979) have 
presented a simplified method for estimating the maximum crest acceleration 
[ilacmax) at z = O] and the natural period of embankment (Figure 12.8). Accord
ing to this theory, the maximum crest acceleration can be given approximately by 
the square root of the sum of the square of maximum acceleration at the crest 
for the first three modes, or 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



12.5 Approximate Method for Evaluation of Maximum Crest Acceleration and Natural 

§ 
� 1.51----.--H-11,-----+---+-----+----+-----+------+--�

-�

] 1.0 1-1,-1-1---1----+---+-----'----...._---+------+--�
� Damping, D = 0.01 
§ Damping, D = 0.05
..... 

� 0.5 t---.r----+-".-------,\.-1--�---,;-+-----+----+-----+------+--�

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Natural period (s) 

Figure 12.7 Acceleration response spectra for El Centro (1940) earthquake 
(from Seed, 1975) 
Source: Copyright 1975. From Seed, H.B. (1975). "Earthquake Effects on Soil-Foundation 

System," in Foundation Engineering Handbook, eds. H.F. Winterkorn and H.Y. Fang . Reproduced 

by permission of Taylor and Francis Group, LLC, a division of Informa plc. 

H 

Ua(max) 
-+----0--+ 

z 

... · ... · .. ... 
···�·· 

Ug 

Figure 12.8 Approximate method for evaluation of maximum crest acceleration 

From Eq. (12.1 7) 

ua (max) (at z = 0) = � [uan (0)]2L.J max 

n = l 

[Ual (0)]2 = 771 (O)Sa1 
max 

1.6 (Figure 12.6). So 

[ Ua1(0)]
max 

= l.6Sal 

Similarly, for the second and third modes, 

(12.18) 

(12.19) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned. or duplicated, in whole or in part Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



12 I Seismic Stability of Earth Embankments 

[ Ua2 (0) ]max 
= l.06Sa2 

[ Ua/0) ]max 
= 0.86Sa3 

Now, combining Eqs. (12.18) through (12.21), 

I [ iia ( 0) ]max 
= �( l.6Sa,)2 

+ ( l.06Sa,}2 

+ ( 0. 86Sa3 )2 1 

(12.20) 

(12.21) 

(12.22) 

The step-by-step procedure for obtaining the maximum crest acceleration is 
given next. 

1. Plot graphs of the variations of G/Gmax versus shear strain (r') and D versus
shear strain ( r') for the soil present in the embankment as shown in Figure 12.9
(Note: G = shear modulus, Gmax = maximum shear modulus, D = damping
ratio.) This can be done by using the principles outlined in Chapter 4.

2. Obtain an acceleration spectra for the design earthquake.
3. Assume a value of the shear modulus G and calculate G/Gmax 

4. For the assumed value of G/Gmax(Step 3), determine the shear strain y'
(Figure 12.9).

5. Corresponding to the shear strain obtained in Step 4, obtain the damping
ratio D (Figure 12.9).

6. Calculate con ( n = 1, 2, and 3) using Eq. (12.3). The value of the shear modu
lus to be used is from Step 3. 

7. Using the damping ratio obtained in Step 5 and co1 , co2 , and co3 obtained in 
Step 6, obtain spectral accelerations Sa1, Sa2, and Sa3 • (This is from the accel
eration spectra obtained in Step 2.) 

G 

G 

D
,,.

; 
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; 
; 
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I/ Step 5 
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,,,
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-
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Figure 12.9 Nature of variation of G/Gmax and D with shear strain 
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12.5 Approximate Method for Evaluation of Maximum Crest Acceleration and Natural 

8. Calculate the maximum crest acceleration using Eq. (12.22).
9. Calculate the average equivalent shear strain in the embankment as follows.

The shear strain, y'(z,t), can be given by (Figure 12.8)

r'(z,t) = 
i 2J1 [Pn (z/ H)] Vn (t)

n = 1 H OJnJl (/3n)
(12.23) 

The terms in the right-hand side of Eq. (12.23) have all been defined in Sections 
12.2 and 12.3. In Section 12.2, we have defined Wn as 

or 

OJ = 
/3n {Q 

n H�p 

/32 G OJ2 
= 

_n X -
n 

H
2 

p 
Substituting Eq. (12.24) into Eq. (12.23), we obtain 

y'(z,t) =H P [i 2Ji(fn(z/H)) conVn(t)] G 
n 

= 1 f3nJ1(/3n) 

=H p [ i </t(z)mnVn (t)]G 
n = 1 

where 

(12.24) 

(12.25) 

(12.26) 

(12.27) 

The variations of¢� with depth (z) for n = 1, 2, and 3 are given in Figure 12.10. 
The maximum shear strain at any depth z of embankment can be approximated 
by considering the contribution of the first mode only. Thus, 

Y�ax(z) =H p </>{(z)Sa1G 
The average value of the maximum shear strain can be given as 

( I ) - H p (A') s Yau max - G 'f'l au
al 

( </>{tu can be obtained from Figure 12.10 as 0.3. So

(r:u ) = 0.3H p Sal
max G 

(12.28) 

(12.29) 

(12.30) 

The average equivalent maximum cyclic shear strain can be about 65o/o of 

(r:u) . Thus
max 
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Figure 12.10 Variation of cK(z) with z/H (from Makdisi and Seed, 1979) 
Source: Makdisi, F.I., and Seed, H.B. (1979). "Simplified Procedure for Evaluating Embankment 

Response," Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT12, pp. 

1427-1434. With permission from ASCE. 

(r:u t
q 

= (0.3)(0.65)H � Sa 1 = 0.195H � Sa 1 (12.31) 

10. Compare (r:u t
q 

to the shear strain obtained in Step 4. If they are the same,
then the maximum crest acceleration obtained in Step 8 is correct. The natu
ral period of the embankment can be calculated at 2rc/co1 •

11. If (r:u t
q 

from Step 9 is different than the strain obtained in Step 4, then
obtain new values for G and D corresponding to the strain level ( r:u t

q

obtained in Step 9. Repeat Steps 6 through 10. A few iterations of this type
will give the correct values of [ila (O)]max , G,D, and the natural period.
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EXAMPLE 12.1 

An earth embankment is 30 m high. For the embankment soil, given: 

Unit weight, r = 19.65 kN/m3

Maximum shear modulus = 160,000 kPa 

Figure 12.11 shows the nature of variation of G/Gmax and D with shear strain. 
Figure 12.12 shows a normalized acceleration spectra (maximum ground 
acceleration is 0.25 g). Determine the maximum crest acceleration. 
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Figure 12.11 
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Figure 12.12 Normalized acceleration response spectra-Taft Record, N - S 
component (from Makdisi and Seed, 1979) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



12 I Seismic Stability of Earth Embankments 

SOLUTION: 

Iteration 1 

Let G/Gmax be equal to 0.4. From Figure 12.11, for G/Gmax = 0.4, the magni
tude of shear strain is 0.07o/o and D ::::: 14%. If G/Gmax = 0.4,

G = (0.4)(160, 000) = 64, 000 kPa

From Eq. (12.3),

So

ro1 
= 2.404 IQ = 2.404 64, 000 = 14_32 rad/s

H �p 30 (19.65/9.81)

Period Ti = 
2

1t = 0.435 s
OJ1 

OJ2 = 5.52 IQ = 5.52
H �p H 

Period T2 = 
2

1t = 0.191 s
O)i 

64, 000 = 32.89 rad/s
(19.65 / 9.81) 

m3 

= 8.65 IQ = 8.65 64, 000 = 51.54 rad/s
H �p 30 (19.65 / 9.81) 

Period T3 = 
2

1t = 0.122 s
OJ

3 

From Figure 12.12, for these values of Ti, T2 , and T3 and D ::::: 14%, the spectral
accelerations are as follows: 

From Eq. (12.22)

Sa1 = (1.35)(0.25 g) = 0.3375 g
Sa2 = (1.41)(0.25 g) = 

0.3525 g
Sa3 = (1.18)(0.25 g) = 0.29 g

[ua (O)]
max 

= )(1.6Sa1 )2 
+ (l.06Sa2 )2 

+ (0.86Sa3)2

= �(1.6 X 0.3375 g)2 + (1.06 X 0.3525 g)2 + (0.86 X 0.295 g)2

= 0.704 g
Using Eq. (12.31),

(r:u t
q 

= 0.195H � Sa1

= (0.195)(30)(
19

·6519·
81

](0.3375 X 9.81) = 0.061%
64, 000 
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12.6 Fundamental Concepts of Stability Analysis 

The above value of (r:
u

)eq is approximately the same as the assumed value. So

[ila (O)]max � 0.70 g 

lfll FUNDAMENTAL CONCEPTS OF STABIL ITY ANALYSIS

Until the mid-1960s, most of the earth embankment slopes were analyzed by the 
so-called pseudostatic method. According to this method, a trial failure surface 
ABC, as shown in Figure 12.13 is chosen. ABC is an arc of a circle with its center 
at 0. Considering the unit length of the embankment at a right angle to the cross 
section shown, the forces acting on trail failure surf ace are as follows: 

a. Weight of the wedge, W.
b. Inertia force on the wedge, khW, which accounts for the effect of an earth

quake on the trial wedge. The factor kh is the average coefficient of horizontal
acceleration.

c. Resisting force per unit area, s, which is the shear strength of the soil acting
along the trial failure surface, ABC.

The factor of safety with respect to strength, F's, is calculated as 

F: = 
resisting moment about 0 

s 

overturning moment about 0 

s(ABC)R 

WL1 + khWL2 

This procedure is repeated with several trial failure surfaces to determine the 
minimum values of E's. It is assumed that if the minimum value of F's is equal to 
or greater than 1, the slope is stable. 

The magnitude of kh used for the design of many dams in the past ranged 
from 0.05 to 0.15 in the United States. In Japan, this value has been less than 0.2. 
Following are some examples of this type of assumption in the design of earth 
dams (Seed, 1981). 

A �----1------------/
· ·. ·. · . I 

·. ·:.:,.. I 
I 

I L2 
I 

I 

Figure 12.13 Stability analysis for slope 

0 
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12 I Seismic Stability of Earth Embankments 

Horizontal seismic Minimum factor of 
Dam Country coefficient, kh safety, f's 

Aviemore New Zealand 0.1 1.5 

Bersemisnoi Canada 0.1 1.25 

Digma Chile 0.1 1.15 

Globocica Yugoslavia 0.01 1.0 

Karamauri Turkey 0.1 1.2 

Kisenyama Japan 0.12 1.15 

Mica Canada 0.1 1.25 

Misakubo Japan 0.12 

N ezahualcoyotl Mexico 0.15 1.35 

Oroville United States 0.1 1.2 

Paloma Chile 0.12 to 0.2 1.25 to 1.2 

Ramganga India 0.12 1.2 

Tercan Turkey 0.15 1.2 

Yeso Chile 0.12 1.5 

A second method that has gained acceptance more recently is the determination 
of the displacement of slopes due to earthquakes. This method is primarily based 
on the original concept proposed by Newmark (1965) and can be explained in 
the fallowing manner. 

Consider a slope as shown in Figure 12.14. When this slope is subjected to 
an earthquake, the stability of the slope will depend on the shear strength of 
the soil and the average coefficient of horizontal acceleration. The factor of 
safety of the soil mass located above the most critical surface ABCD will become 
equal to 1 when kh becomes equal to k

y
. This value of kh = k

y 
may be defined 

A 

D 

Figure 12.14 Soil slope 
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12.6 Fundamental Concepts of Stability Analysis 

Time 

Time 

Time 

Figure 12.15 Integration method to determine down-slope displacement 

as the coefficient of yield acceleration. Now ref er to Figure 12.15a, which shows 
a plot of the horizontal acceleration with time to which the soil wedge ABCD 

is being subjected (Figure 12.14). At time t = t1 , the horizontal acceleration is 
kyg (g = acceleration due to gravity). Between time t = t1 tot = t2 , the velocity 
of the sliding wedge will increase. This velocity can be determined by integration 
of the shaded area. The velocity will gradually decrease and become equal to 
zero at t = t3 (Figure 12.15b ). The displacement of the soil wedge can now be 
determined by integration of the area under the velocity versus time plot between 
t = t1 and t = t3 (Figure 12.15c). 

It is important to note that the peak shear strength of the soil along the crit
ical surf ace ABCD has now been mobilized. Hence, when the horizontal accel
eration reaches ky(l)g (which is less than kyg) at time t = t4 , the velocity of the 
sliding wedge will again increase, since the post-peak strength will be mobilized. 
As before, we can determine the velocity and the displacement of the sliding 
wedge by using the integration method. Hence, with time, the displacement of the 
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12 I Seismic Stability of Earth Embankments 

wedge gradually increases. In most cases of embankment stability consideration, 
it can be shown (Seed, 1981 ) that where the crest acceleration does not exceed 
0.75 g, deformation of such embankments will usually be acceptably small if the 
embankment has F's = 1.15 as determined by the pseudostatic analysis. 

Average Value of kh

In reference to Figure 12.13, it has been mentioned in this section that an average 
value of kh is usually assumed for the pseudo static method of analysis of slopes. 
It is now essential to have a general theoretical background as to what this aver
age value of kh is. The following theoretical derivation has been recommended by 
Seed and Martin (1966). 

Figure 12.16 shows a hypothetical earth embankment, which is triangular in 
cross section. Let us consider the inertia force on an arbitrary soil wedge Oac. The 
displacement of the embankment at a depth z can be given as [Eqs. (12.6) and (12.13)] 

( ) = 
n�00 2Jo[/3n(z/H)] 

V. ()u z,t � . n t 
n = 1 mnf3nlo (/3n) 

So, the distribution of shear strain can be obtained as 

au (z,t ) = 
n

i
oo 211 [f3n(z/H)] .Vn ( t )

az n = 1 Hmnli(f3n ) 

Hence, the distribution shear stress, r(z,t) is 

( ) _ au ( ) _ n�00 2Gl1 [f3n (zf H)] ( ) r z, t - G
-::;-

z, t - � (/3 ) Vn t 
oz n = 1 Hmnl1 n 

0 

X 

H 

z 

Figure 12.16 Analysis for average value of kh

(12.32) 

(12.33) 

(12.34) 
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The shear force, F(z,t), acting on the base of the wedge Oac is 

F(z,t) = r(z,t)B

However, 

F(z,t) = (massof the wedgeOac) ua U)au

where 

So 

Ua ( t )au = average lateral acceleration
p = density of the soil in the wedge

ua (t)au = 2F(z,t) = 2r(z,t)B = 2r(z,t) 
pBz pBz pz 

Combining Eqs. (12.34) and (12.37), 

So 

.. ( ) =
n� 00 4GJ1 [/3n(z/H)] 

V. ( )Ua f au £,,.,i ( ) n t 
n = 1 pHOJnZJ1 /3n 

(12.35) 

(12.36) 

(12.37) 

(12.38) 

(12.39) 

The value of kh is a function of time. Since the average acceleration varies with 
the depth z, the magnitude of kh also varies with time. Figure 12.17 shows the 
results of a calculation for kh for a model embankment at four different levels. 

Yield Strength 

In the analysis of stability for earth embankments, it is important to make proper 
selection of the yield strength of soil to determine the shear strength parameters. 
The yield strength is defined as the maximum stress level below which the mate
rial exhibits a near-elastic behavior when subjected to cyclic stresses of numbers 
and frequencies similar to those induced by earthquake shaking. 

Figure 12.18 shows the concept of cyclic yield strength of a clayey soil 
(Makdisi and Seed, 1978). The material in this case has an yield strength of about 
90o/o of its static undrained strength. In Figure 12.18, it can be seen that under 
100 cycles of stress, which amounts 80% of static undrained strength, the mate
rial behaves in a near-elastic manner. However, when 10 cycles of stress, which 
amounts to 95% of static undrained strength, is applied, substantially large 
permanent deformation is observed (Figure 12.18). Hence, the yield strength is 
about 90% of its static undrained strength. 
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Figure 12.17 Values of average seismic coefficient for 30-m-high embankment 

subjected to El Centro earthquakes (shear wave velocity, Vs = 300 mis, 20o/o 
critical damping) (from Seed and Martin, 1966) 

Source: Based on Seed, H.B., and Martin, G.R. (1966). "The Seismic Coefficient in Earth Dam 
Designs," Journal of the Soil Mechanics and Foundatwns Division, ASCE, Vol. 92, No. SM3, pp. 25-58. 

Stability Analysis 

The remainder of this chapter is divided into two parts. The first part is devoted 
to the pseudostatic methods of stability analysis and the second part to the deter

mination of the deformation of slopes. 

Pseudostatic Analysis 

EB CLAY SLOPES (</)
ANALYSIS 

0 CONDITION)-KOPPULA'S 

A clay (c/> = 0 condition) slope of height H is shown in Figure 12.19a. In 

order to determine the minimum factor of safety of the slope with respect to 

strength, we consider a trial failure surf ace ABC, which is an arc of a circle 
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Figure 12.18 Concept of cyclic yield strength 
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Figure 12.19 Koppula's analysis for clay slopes ((/J = 0 condition) 

H 

with its center located at 0. Let the saturated unit weight and the undrained 
cohesion of the clay soil be equal to y and cu , respectively. The undrained 
cohesion cu may increase with depth z measured from the top of the slope and 
can be expressed as 
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12 I Seismic Stability of Earth Embankments 

(12.40) 

where a0 = constant. 
Per unit length of the slope, for consideration of the stability of the soil mass 

located above the trial failure surf ace, the following forces need to be considered: 

a. Weight of the soil mass, W;
b. Undrained cohesion, cu , per unit area along the trial failure surface ABC; and
c. Inertia force on the soil mass, khW (where kh = average horizontal acceleration 

of the mass) 

The overturning moment, Mn , about O can be given as 

Koppula (1984) has expressed Mw and ME in the following forms: 

Mw = yH
3 

(l - 2cot2 f3 - 3cotacotf3 + 3cotf3cot;l., 
12 

(12.41) 

+ 3cot;l.,cota - 6ncotf3 - 6n2
- 6ncota + 6ncot;l.,) (12.42)

ME = 
khyH

3 

(cot/3 + cot3 ;t + 3cotacot2 A
12 (12.43) 

- 3cotacotf3cot;l., - 6ncotacot;l.,)

The restoring moment MR about O is 

MR
= RJ:: cuRdf) 

where R = radius of the circular arc 

Cu = c0 + a0 [Rcos(;l., + 8) - Rcos(a - A) + H]

Combining Eqs. (12.44) and (12.45) 

aW �Wa MR = . 
0 

• [ a(l - cotacos;L) + cot;l.,] + ----

4 s1n2 a s1n2 ;t 2 sin2 a sin2 ;t 
The factor of safety E's against sliding can be given as 

IF, = 

Mw:
R 

ME I 

(12.44) 

(12.45) 

(12.46) 

(12.47) 

The minimum value of E's has to be determined by considering several trial failure 
surfaces. Koppula (1984) has expressed a minimum factor of safety in the form 

(12.48) 
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where N1 and N2 = stability numbers. Stability numbers are functions of kh, 
the slope angle {3, and also the depth factor, D (for the definition of depth fac
tor, see Figure 12.19). Figure 12.20 shows the variation of N1 and kh varying 
from O to O .4 and {3 varying from 0° to 90° . In a similar manner, the variation 
of N2 with kh and D for {3 < 50° is shown in Figure 12.21. For {3 > 55° , the 
variation of N2 with kh is given in Figure 12.22. In order to use Eq. (12.48) and 
Figures 12.20, 12.21, and 12.22, the following points needs to be kept in mind. 

1. If the undrained shear strength of the soil increases linearly from zero at the
top, then

(12.49) 

For this case, the critical slip surface associated with minimum F's passes 
through the toe of the slope and lies within the slope. So 

n = O} 
D =0 

18 t--t----+-----+--+-----+------1 

161--1----+-----+--+-----+------I 

14'--'1----+-----+--+-----+------1 

o�-�-�--.....__-�-� 
0 20 40 60 

/J(deg) 

80 100 

Figure 12.20 Variation of N1 with slope angle {3 (from Koppula, 1984) 

(12.50) 

Source: Koppula, S.D. (1984). "Pseudo-Static Analysis of Clay Slopes Subjected to Earthquakes," 

Geotechnique, Institution of Civil Engineers, London, Vol. 34, No. 1, pp. 71-79. 
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Figure 12.21 Variation of N2 with kh and /3 (from Koppula, 1984) 

Source: Koppula, S.D. (1984). "Pseudo-Static Analysis of Clay Slopes Subjected to Earthquakes," 

Geotechnique, Institution of Civil Engineers, London, Vol . 34, No. 1, pp. 71-79. 

6--------------------

kh = O 
0.05 

5 1------+�;;;::--___.o!!�f-------+-----l 
0.1 

0.15 
0.2 

4 1------+-=--.....,._=-----,r"""'-.....::---=-""'-c:---f-°"""'=�..,----l 

0.25 
0.3 

3 1-�0.!d.3'.::!...5��==�==--J..��.;;_-1
0.4 

0.45 

2 --------<f-------+------+------f 

1 .__ ___ ___....._ ___ __,_ ____ ......_ ____ _, 
50 60 70 80 90 

/J(deg) 

Figure 12.22 Variation of N2 with f3 > 55° and kh (from Koppula, 1984) 

Source: Koppula, S.D. (1984). "Pseudo-Static Analysis of Clay Slopes Subjected to Earthquakes," 

Geotechnique, Institution of Civil Engineers, London, Vol . 34, No. 1, pp. 71-79. 
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Also

2. If the magnitude of cu is constant with depth, then

ao = 0} 
Cu = 

Co 

For this case

F: =�N 
s yH i 

(12.51)

(12.52)

(12.53)

The stability number N2 is a function of /3, D, and kh if /3 < 53°. However, if
f3 > 53°, then N2 is a function of f3 and kh only (that is, n = 0 and D = 0). 

EXAMPLE 12.2 

Ref er to the slope shown in Figure 12.19. Given:

H = 15 m
/3 = 60°

r = 18 kN/m3

Cu = 48 + 3z (kPa)

Determine the factor of safety F's for kh = 0.3.

SOLUTION: 

From Eq. (12.48)

From Figure 12.20, for f3 = 60° and kh = 0.3, the magnitude of Ni ::::::: 2.38.
Again, from Figure 12.22, for f3 = 60° and kh = 0.3, the magnitude of N2 is
about 3.28. So 

F's = (1-)(2.38) + 
48 (3.28) = 0.397 + 0.583 = 0.98

18 (18)(15) 
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BJ SLOPES WITH c-</J SOIL-MAJUMDAR'S ANALYSIS

Taylor (1937) proposed the friction circle method of analyzing the stability of 
slopes with c-¢ soils. In this analysis, the effect of earthquakes was not taken into 
consideration. The details of this slope stability analysis can be found in most 
soil mechanics textbooks (for example, Das, 2010). However, it can be summa
rized as follows. 

Figure 12.23 shows a slope made of a soil having a shear strength that can 
be given as 

where 

r 1 = c + a' tan¢ 

r 1 = shear strength 
c = cohesion 

CJ' = effective normal stress 
¢ = drained friction angle 

(12.54) 

For ¢ greater than about 3° , the critical circle for stability analysis always passes 
through the toe, as shown in Figure 12.23. 

For stability analysis, one can define three different factors of safety for the 
soil at any point along the critical surface: 

1. Factor of safety with respect to friction:

v _ tan¢ 
r

ip 
-

tan</Jd 

where ¢ d = developed friction angle ( < ¢ ). 

2. Factor of safety with respect to cohesion:

where cd = developed cohesion ( < c ). 

H 

Figure 12.23 Slopes with c-¢ soil 
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3. Factor of safety with respect to strength:

F = 
c + a'tan<f> 

s 
cd + a' tan</>d

It is obvious from the preceding definitions that if 

then 

c tan¢ 
----

(12.55) 

(12.56) 

It is important to note that the relationship for the factor of safety developed in 
Section 12.7 is the factor of safety with respect to strength. 

Using the preceding concepts for factor of safety, Taylor's analysis (1937) for 
the stability of slopes by the friction circles method can be given in a graphical 
form, the nature of which is shown in Figure 12.24. Note that in Figure 12.24 the 
term m is defined as 

Cd 
m = -

yH 

Majumdar (1971) expanded Taylor's analysis of slope by taking into con
sideration the horizontal earthquake forces as shown in Figure 12.25. By sim
ple mathematical manipulations, Majumdar showed that if the actual effective 
friction angle</> of the soil can be modified to </Jm, it can then be used in Taylor's 
analysis to determine the factor of safety with respect to strength (F's) for the 
critical surface of a slope. 

Cd 
m=-

yH 

Slope angle, /J ( deg)

Figure 12.24 Nature of variation of m with f3 and </Jd 
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The relationship between </) and c/Jm can be expressed as 

c/Jm = tan-1(M tan</)) (12.57) 

The term Min Eq. (12.57) is a function of the slope angle (/3) and the horizontal 
coefficient of acceleration ( kh ). Figure 12.26 shows the variation of M with kh for 
/3 = 15° , 30°, 45°, 60° , and 75° . 

Figure 12.27 shows the modified plot of Taylor's chart (that is, m versus /3) 
for use of stability analysis. It is important to note that </Jd for a given soil is 
always less than or equal to <Pm · 

In order to determine the factor of safety for a given slope, the following 
step-by-step procedure can be applied. 

1. Determine the soil parameters </) and c and the unit weighty.
2. Determine the parameters for the slope, that is, /3 and H.
3. For given values of c/J, /3, and kh, determine the factor M from Figure 12.26.
4. Assume several values for the developed friction angle cpd (such as c/Jdo) ,

¢I<2), </Jd(3),···). Note that </Jd < </Jm.

5. For each assumed value of </Jd, determine the factor of safety with respect to
friction, or

tan</Jm 

Fcpo) = ---tan</Jd(1) 

tan</)m 
Fcp(2) = ---

tan</)d(2) 

tan</Jm 
Fcp(3) = ---

tan</Jd(3) 

6. With each assumed value of c/Jd and the slope angle /3, go to Figure 12.27 and
determine the stability number m.
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7. From the values of m calculated in Step 6, calculate cd and the factor of
safety with respect to cohesion (Fe) as

Cd(l) = m1r H; F'c(l) 
C 

Cd(l) 

Cd(2) = m2r fl; F'c(2) = 
C 

Cd(2) 

8. Plot a graph of� versus Fe as determined from Steps 5 and 7 (Figure 12.28)
and determine F's = Fe = F<P .

M 

M 

1.0 

0.8 \ 
0.6 

0.4 

0.2 

0 
0 

"' 

1.0 

� 
0.8 

0.6 

0.4 

0.2 

0 
0 

� 

"' 

0.2 

� 
' 

"' 

0.2 

� 

0.4 

kh 

(a) 

/3= 15°

</J= 50 

</J= 10°

0.6 

/3= 30°

�- All values of¢

----
r---.._ 

0.6 

(b) 

Figure 12.26 Variation of M with kh (from Majumdar, 1971) 
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Source: Majumdar, D.K. (1971). "Stability of Soill Slopes Under Horizontal Earthquake Force," 

Geotechnique, Institution of Civil Engineers, London, Vol. 21, No. 1, pp. 372-378. 
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12.8 Slopes with c-<f> Soil-Majumdar's Analysis 

0 .....__.____,,__....___.'---........ --'---.......... --......... ---'-----'----,...._-__,

20 40 

Slope angle, p ( deg) 

Figure 12.27 Modified Taylor's chart 

/ 

/ 

/ 

Figure 12.28 Calculation of F's 

EXAMPLE 12.3 

60 80 90 

A homogenous slope is shown in Figure 12.29a. Using the procedure described 
in this section, determine the factor of safety with respect to strength. Use 
kh = 0.3. 
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SOLUTION: 

Given H = 12 m, f3 = 30°, y = 16 kN/m 3
, c = 20 kPa, and </> = 34° . Now, 

ref erring to Figure 12.26b, for kh = 0.3, M � 0.54. So 
</>m = tan- 1(Mtan<f>) = tan- 1 [(0.54)(tan34)] = 20 °

The following table can b e  prepared. 

Assumed 
developed 

tan</Jmfriction angle, m 
F: -

c/>d ( deg) tan</Jd ¢1 - tancpd (Figure 12.27) 
5 0.0875 4.16 

10 0.1760 2.07 

15 0.2680 1.36 

20 0.3640 1.00 

A plot of� versus Fe is shown in Figure 12.29b, 
from which F's = Pc = � = 1.73.

Figure 12.29 
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12.9 Slopes with c-cp Soil-Prater's Analysis 

BJ SLOPES WITH c-</J SOIL-PRATER'S ANALYSIS

It was mentioned in Section 12.6 that, due to earthquakes, slopes may undergo 
permanent deformation. Prater (1979) has analyzed slopes with c -<p soils to 
determine the yield horizontal acceleration, which is defined as the threshold hor

izontal acceleration, kh = k
y
, acting upon a sliding mass, above which permanent

deformation occurs. It corresponds to a factor of safety with respect to strength 
(F's) of unity. In this analysis the failure surface was assumed to be an arc of a 
logarithmic spiral defined by the equation (Figure 12.30) 

r = roeOtanO (12.58)

where ¢ = soil friction angle. Prater's analysis for determination of the yield
acceleration is summarized next. 

Figure 12.31 shows a homogenous slope. The unit weight, cohesion, and 
angle of friction of the soil are, respectively, r, c, and ¢. ABC is a trial failure 
surface that is the arc of a logarithmic spiral. Referring to Figure 12.31, 

n [ 
J
-1

d = ; = sint.Jl + m2
- 2mcos p 

• • 1( s1np 
J J = t + s1n-

.J1 + m2 
- 2mcosp

q=rc-p-j 

I 

I 

I 

I 

I 

I 

I 

I r 

I 

I 

I 

.,.,...,.,.. 'o

Figure 12.30 Log spiral 

(12.59) 

(12.60) 

(12.61) 

(12.62) 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



12 I Seismic Stability of Earth Embankments 

\ /'--,,,tq
j �/ \� /'',,, __

Note: OA = dH = r0 

OC=mdH 

� ',,,
I ' 

',,
I 

\ ', 

G 
I 

I D ',, A :-----
/i ____ \, 

.. :(i> :'
-' .• 

: / \' ·. ·. I 
I 

I 
I 

I ,' 
I / 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I : :, /.· 
I .··.)/'· 
I . './.. t 

C Iv.<·:. 

r 

¢ 
C 

H 

Figure 12.31 Prater's analysis for determination of yield acceleration 

Considering a unit length of the embankment at right angles to the cross section 
shown, the overturning moment about O can be given as 

(12.63) 

where 

M
g 

= moment due to gravity force 
= (M1 

- M2 - M3 ) (12.64) 

M1 = moment of the soil weight in the area OABC about 0

( 
yd'H' 

)[m3 sinj - sinq) - 3tant/J(m3 cosj + cosq)] (12.65)3 9tan2 ¢ + 1 

M2 = moment of the soil weight in the area OAF about 0
yd3

H
3

= [sin3 q(cot2 q - cot2 j)] (12.66) 
6 

M3 = moment of the soil weight in the area CDF about 0

r H
3

[cot2 f3 - cot 2 j - 3md cos j(cot � - cot j)] (12.67) 
6 
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12.9 Slopes with c-cp Soil-Prater's Analysis 

kv = average vertical acceleration 

ME = moment due to horizontal inertia force 

= Mekh = (M4 - M5 - M6)kh (12.68) 

M4 =
yd3H3

[(m3 cosj + cosq) + 3tan</)(m3 sinj - sinq)] (12.69) 
3(9 tan2 </) + 1) 

yd3H3 
M5 = [sin3 q(cosq + cosj)] 

3 

M6 = r 
H 3 

(3d sinq + l)(cot ,B - cot j) 
6 

kh = average horizontal acceleration 

(12.70) 

(12. 71) 

Hence, combining Eqs. (12.63) through (12.71), an expression for the over
turning moment, Mn, can be obtained. 

The restoring moment, MR, can now be expressed as 

moment of the cohensive 

force developed along 

the trial failure 

surrace ABC, Mc

+ 

moment of the frictional 

force developed along 

the trial failure 

surface ABC, M1

However, based on the property of logarithmic spiral, the line of action of the 
resultant frictional force at any given point along the trial failure surface will 
pass through the origin 0. Hence 

or 

M
1

= 0 

M =
cd2H2 (m2

- 1)
C 

2 tan</) 

(12.72) 

So, for equilibrium of the soil mass located above the trial failure surface 

Mn - Mc
= 0 

M
g
(l + kv ) + Mekh - Mc 

= 0 

M
g

+ M
gkv + Mekh - Mc

= 0 

kh 
= Mc - M

g

Me +bM
g

(12.73) 
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12 I Seismic Stability of Earth Embankments 

where 

b = kv

kh

(12.74) 

Prater (1979) has suggested that a realistic value of b would be 0.3. The yield 
acceleration kh for the most critical surface can be determined by trial and error. 
Table 12.1 shows the magnitudes of the yield acceleration determined in this 
manner with b = 0. 

[EIE SLOPES WITH c-</J SOIL-CONVENTIONAL METHOD

OF SLICES 

In the analysis for the stability of slopes provided in Section 12. 7, 12. 8, and 12. 9, 
it is assumed that the soil is homogeneous. However, in a given slope, layered soil 
can be encountered. The method of slices is a general method that can easily 
account for the change of y, c, and� in the soil layers. 

In order to explain this method, let us consider a slope as shown in 
Figure 12.32. Let ABC be a trial failure surface. Note that ABC is an arc of a 
circle with its center at O.
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Figure 12.32 Conventional method of slices 
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12.10 Slopes with c-<f> Soil-Conventional Method of Slices 

Table 12.1 Yield acceleration, kh = k
y

clyH 

/j(deg) tan¢ 0.05 0.10 0.15 0.20 

15 0.1 0.00 0.08 0.15 0.20 

0.2 0.10 0.20 0.27 0.33 

0.3 0.20 0.31 0.39 0.44 

0.4 0.30 0.41 0.50 0.55 

0.5 0.40 0.51 0.60 0.66 

0.6 0.49 0.61 0.70 0.76 

0.7 0.58 0.70 0.80 0.87 

0.8 0.66 0.79 0.89 0.97 

0.9 0.74 0.87 0.98 1.07 

30 0.1 0.00 0.13 0.20 

0.2 0.00 0.11 0.25 0.35 

0.3 0.05 0.22 0.37 0.46 

0.4 0.14 0.32 0.46 0.56 

0.5 0.24 0.41 0.55 0.66 

0.6 0.32 0.50 0.63 0.75 

0.7 0.40 0.57 0.72 0.83 

0.8 0.47 0.65 0.79 0.91 

0.9 0.53 0.71 0.86 0.98 

45 0.1 0.07 0.22 

0.2 0.00 0.18 0.33 

0.3 0.11 0.28 0.42 

0.4 0.00 0.20 0.37 0.51 

0.5 0.06 0.29 0.46 0.59 

0.6 0.14 0.36 0.53 0.67 

0.7 0.21 0.43 0.59 0.74 

0.8 0.27 0.49 0.66 0.80 

0.9 0.33 0.54 0.71 0.84 

60 0.1 0.00 0.16 

0.2 0.08 0.26 

0.3 0.00 0.18 0.34 

0.4 0.05 0.26 0.42 

0.5 0.13 0.33 0.49 

0.6 0.00 0.20 0.39 0.55 

0.7 0.01 0.26 0.45 0.60 

( Continued) 
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clyH 

/J(deg) tan(/) 0.05 0.10 0.15 0.20 

0.8 0.07 0.32 0.50 0.65 

0.9 0.13 0.36 0.54 0.69 

75 0.1 0.04 

0.2 0.00 0.14 

0.3 0.02 0.22 

0.4 0.10 0.29 

0.5 0.00 0.17 0.35 

0.6 0.01 0.23 0.40 

0.7 0.07 0.28 0.44 

0.8 0.12 0.32 0.38 

0.9 0.16 0.35 0.51 

Note: b = 0. 

The soil above the trial failure surface is divided into several slices. The length 
of each slice need not be the same. For the nth slice, consider a unit thickness at 
right angles to the cross section shown. The weight and the inertia forces are, 
respectively, Wn and khWn . The forces Pn and Pn + 1 are the normal forces acting 
on the sides of the slice. Similarly, the shearing forces acting on the sides of the 
slice are Tn and Tn + 1• The forces Pn, Pn + 1, Tn and Tn + 1 are difficult to determine. 
However, we can make an approximate assumption that the resultant of Pn and 
Tn are equal in magnitude to the resultants of Pn + 1 and Tn + 1 and also their lines 
of action coincide. The normal reaction at the base of the slice is N, = Wncosa n · 
It is assumed that the inertia force khWn has no effect on the magnitude of N,. So 
the resisting tangential force T, can be given as 

1 
T, = -(cBn sec an + N, tan¢) 

F's 

1 
= -(cBn sec an + Wn cos an tan¢) 

F's 

Now, taking the moment about O for all the slices, 

P . P R L (WnRs1nan + khWnLn ) = L -(cBn sec an + Wn cos an tan¢) 
n=l n=IF's 

or 

(12.75) 

(12.76) 

(12.77) 
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12.11 Simplified Procedure for Estimation of Earthquake-Induced Deformation 

. : ·. � : . . . .
.. . . . ·. . . 

. . . 

Figure 12.33 Method of slices for slopes in layered soil 

Note that the value of an may be either positive or negative. The value of an

is positive when the slope of the arc is in the same quadrant as the ground slope. 
To find the minimum factor of safety-that is, the factor of safety with reference 

to the critical circle-several trials have to be made, each time changing the cen

ter of the trial circle. 
For convenience, a slope in homogeneous soil is shown in Figure 12.32. 

However, the method of slices can be extended to slopes of layered soil, as 

shown in Figure 12.33. The general procedure of stability analysis is the same; 

however, some minor points need to be kept in mind. While using Eq. (12.77), 
the values of (/J and c will not be the same for all slices. For example, for slice 2, 

one has to use (/J = </>i and c = c2 ; similarly, for slice 3, (/J = </>J and c = c3 will need 

to be used. 

Deformation of Slopes 

[EID SIMPLIFIED PROCEDURE FOR ESTIMATION

OF EARTHQUAKE-INDUCED DEFORMATION 

The concept relating to the deformation of embankment slopes due to 
earthquake-induced vibration was briefly described in Section 12.6. Following 
is a simplified step-by-step procedure developed by Makdisi and Seed (1978) for 

estimation of the deformation. When this procedure is applied, it is assumed that 

the shear strength of the soil does not change during shaking. Hence this method 
cannot be used in cases where there is pore pressure buildup. 

1. Determine the height of the embankment (H) and the shear strength param
eters of the soil (c and (/J ).

2. Determine the maximum crest acceleration [ua (O)]max and the first natural

period (Ti = 2n/m) by using the method described in Section 12.5.
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Figure 12.34 Variation of maximum acceleration ratio with depth of sliding 
mass (from Makdisi and Seed, 1978) 
Source: Makdisi, F.I., and Seed, H.B. (1978). "Simplified Procedure for Estimating Dam and 

Embankment Earthquake-Induced deformations," Journal of the Geotechnical Engineering 

Division, ASCE, Vol. 104, No. GT7, pp. 849-859. With permission from ASCE. 

3. With reference to Figure 12.34, choose the critical section likely to deform
and determine the magnitude of kh(max)g/[iia

(O)]max from Figure 12.34. Note
that kh(max) is the coefficient of the maximum average horizontal acceleration
for a given value of z I H. T he concept of the coefficient of average accelera
tion was explained in Section 12. 6. Now determine the magnitude of kh(max)g.

4. Determine the yield acceleration-that is, the acceleration kyg (see Section
12.9) for which the sliding mass has F's = 1.

5. Determine [kyfkh(max)] and the magnitude of the earthquake (M). With these
values, go to Figure 12.35 to obtain [U /kh(max)g'Ii] (in seconds). With the
known values of kh(max)g (Step 3) and Ji (Step 2), the magnitude U can be
determined. Note that U is the deformation in the horizontal direction.

EXAMPLE 12.4 

Refer to the soil embankment in Example 12.1 (Figure 12.36). 

a. Calculate the yield acceleration kyg by using the concept described in
Section 12.9. Use Table 12.1 with b = 0.
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12.11 Simplified Procedure for Estimation of Earthquake-Induced Deformation 
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Figure 12.35 Variation of [U / kh(max)gI'i] with ky / kh(max) (from Makdisi and 
Seed, 1978) 

Source: Makdisi, F.I., and Seed, H.B. (1978). "Simplified Procedure for Estimating Dam and 

Embankment Earthquake-Induced deformations," Journal of the Geotechnical Engineering 

Division, ASCE, Vol. 104, No. GT7, pp. 849-859. With permission from ASCE. 

b. For the critical failure surface passing through the toe of the embankment,
calculate the slope deformation using the procedure described in Section
12.11. Use the magnitude of earthquake M = 7.0. Also use the results of
Example 12.1 for maximum crest acceleration.

Gmax = 16,000 kPa 
r= 19.65 kN/m3 

</J= 16.7° 

c= 59 kPa 

Figure 12.36 
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SOLUTION: 

a. Referring to Table 12.1, for f3 = 45° , tan</)= tan 16.7 = 0.3, and clyH =
59/[(19 .65)(30)] = 0.1, the magnitude of ky is 0.11.

So, the yield acceleration is O.llg.

b. Referring to Figure 12.34, for z/H = 1, the average value of
[kh(max)g ]/ [ua (O)]max is about 0.34. From Example 12.1, [ila (O)]max = 0.70 g.
So

Thus, 

kh(max) = _( o_. 34_)--'--( o_. 1_0 g----'-) 
= 0 _238

ky = 0.11 = 0.462
kh(max) 0.238 

Also, from Example 12.1, Ti = 0.435 sec. For earthquake magnitude M = 7.0, 
referring to Figure 12.35, 

So 

_u __ �o.036
kh(max)g7i 

U = (0.036)(0.238)(9.81)(0.435) = 0.0366 m = 36.6 mm 

PROBLEMS 

12.1 An earth embankment is 25 m high. For the embankment soil, 

Unit weight= 18 kN/m3

At a certain shear strain level 
G = 50,000 kPa and D = l5o/o 

Using the acceleration spectra given in Figure 12.12 (maximum ground 
acceleration is 0.23 g), estimate the maximum crest acceleration of the 
embankment. 
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12.2 An earth embankment is 18 m high. For the embankment soil, 

Unit weight = 18.5 kN/m3

Maximum shear modulus = 165,000 kPa 

Problems 

Using the variation of G/Gmax and D with shear strain as given in 
Figure 12.11 and the acceleration spectra given in Figure 12.12 
( maximum ground acceleration = 0.2 g ), determine the maximum crest 
acceleration. 

12.3 A clay ( </J = 0°) is built over a layer of rock. For the slope, 

Height = 20m 
Slope angle,/3 = 30°

Saturated unit weight of soil = 17.8 kN/m3

Undrained shear strength, Cu = 5z kPa 
( z = depth measured from the top of the slope) 

Determine the factor of safety F's if kh 
= 0.4. Use the procedure out

lined in Section 12. 7. 

12.4 Redo Problem 12.3 assuming cu 
= 40 + 5z kPa and other parameters 

remain the same. 

12.5 Refer to Problem 12.3. Other parameters remaining the same, let the 
slope angle f3 be changed from 30° to 75°. Calculate and plot the vari
ation of the factor of safety (F's) with {3. Use the procedure outlined in 
Section 12. 7. 

12.6 For a homogenous soil, 

Slope angle, f3 = 30°

Height, H = 15 m 
Soil cohesion = 60 kPa 

Soil friction angle, </J = 25°

Unit weight of soil = 19.5 kN/m3

kh = 0.25 

Determine the factor of safety with respect to strength. Use the proce
dure described in Section 12.8. 
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12.7 Repeat Problem 12.6 with the following: 

Slope angle, f3 = 45°

Height, H = 25 m 

Soil cohesion = 60 kPa 

Soil friction angle, ¢ = 20°

Unit weight of soil= 19 kN/m3

kh = 0.25 

12.8 For the slope described in Problem 12.6, what would be the yield 
acceleration (that is, khg)? Use the procedure described in Section 12.9. 
Useb = 0. 

12.9 The properties of the soil of a given slope 15.3 m high are as follows: 

12.10 

Unit weight, r = 18.5 kN/m3

Cohesion, c = 42.5 kPa 

Angle of friction, ¢ = 20°

The yield acceleration for the slope was estimated to be 0.36. This was 
done using the procedure described in Section 12.9 with b = 0. Estimate 
the slope angle f3. 

A homogeneous slope is shown in Figure P12.10. For the trial failure 
surf ace shown, determine the factor of safety with respect to strength. 
Use the method of slices. (Note: The slope angle is /3 = 30°.) 

r= 16 kN/m3

f/J= 20°

c= 20 kPa 

kh = 0.2 
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Figure P12.10 

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied. scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter{s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



12.11 

12.12 

References 

A 25 m high embankment (c-</J soil) is constructed over a hard stratum, 
The critical failure circle passes through the toe of the slope and the 
average yield acceleration of the slope is 0.15 g. The maximum crest 
acceleration due to an earthquake of magnitude M = 7.5 has been esti
mated to be 0.6 g. The first natural period is 0.8 s. Estimate the slope 
deformation. Use the procedure described in Section 12.11. 

Refer to Example 12.4. Other quantities remaining the same, if the soil 
friction angle </J is changed to 21.8 ° , estimate the slope deformation. 
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Primary and Secondary 

Forces of Single-Cylinder 

Engines 

Machinery involving a crank mechanism produces a reciprocating force. This 
mechanism is shown in Figure A.1 a, in which 

0 A = crank length = r1 

AB = length of the connecting rod = r2

Let the crank rotate at a constant angular velocity ro. At time t = 0, the ver
tical distance between O and B (Figure A.1 b) is equal to r1 + r2 • At time t, the 
vertical distance between O and B is equal to r1 + r2 - z, or 

But, 

Now, 

z = (r1 + r2 )-(r2 cos a+ r1 cos wt)

r2 sin a = r1 sin rot 

cos a = .JI -sin2 a = 1-( ;: J sin2 wt 

� 1- _!_(�J2 

sin2 wt 
2 r2 

Substituting Eq. (A.3) into Eq. (A.1), 

z = (r1 + r2 )-(r2 cos a+ r1 cos wt)
= r2 ( 1 -cos a) + r1 ( 1 -cos rot) 

= r2 [ 1 -1 + � ( ;: J sin2 wt] + r1 ( 1 - cos wt)

(A.1) 

(A.2) 

(A.3) 
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B 
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0 
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Figure A.1 

However, 
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� .......... ..... ..... mt'1 ..._ 
�o 

(b) 

-
r1

( 1 2 
l = 2

72

sin2 rot+ r1 (1 - cos rot)

sin2 mt=_!_( 1 - cos 2mt) 
2 

Substituting Eq. (A.5) into Eq. (A.4), one obtains 

z = ( ! �i
2 J (1- cos 2rot) + r1 ( 1 - cos rot)

Appendix A 

I 
z 

l 

I 

(A.4) 

(A.5) 
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Appendix A 

1 2-r1 4 r1 +--

r2

- r1 cos cot+ 

1 
2-r1 4 cos2cot 

The acceleration of the piston can be given by 

Z = r1w 2 [ cos wt+ ( ;: J cos 2wt] 

If the mass of the piston is m, the force can be obtained as 

F = mZ = mr1W2 cos wt + m ( �: J w 2 cos 2wt 

(A.6) 

(A.7) 

(A.8) 

The first term of Eq. (A.8) is the primary force, and the maximum primary 
force 

(A.9) 

Similarly, the second term of Eq. (A.8) is generally referred to as the 
secondary force, and 

-
r1 2 

( 

2 

J Fmax(sec) - m ,2 
co (A.10) 
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INDEX 

A 

Acceleration pickup, 42 
Acceleration spectra, 54 7 
Active earth pressure coefficient: 

Coulotnb,343-346,347-350 
effect of slope of backfill, 363 
effect of soil friction angle, 363 
effect of wall friction angle, 363 
Mononobe-Okabe solution, 346, 

351-358
rotation about bottotn, 367-368 
rotation about top, 371 
translation, 368-370 

Active earth pressure theory, c-<!> soil, 
384-393

Active isolation: 
definition of, 269 
by use of open trench, 269-272 

Air blast loading, 4 
Atnplitude attenuation, elastic waves, 

88-91
Atnplitude, foundation vibration: 

rocking, 224-225 
sliding, 230-231 
torsional, 233 
vertical, 214-215 

Atnplitude of acceleration, rock, 
323-324

Atnplitude of vibration: 
allowable vertical, foundation, 

217-218
at resonance with datnping, 32-35 

Atnplitude reduction factor, 272 
Analog solution, foundation: 

Hsieh's analog, 209-210 
Lystner's analog, 210-212 
rocking vibration, 222 
sliding vibration, 228 
torsional vibration, 231 

Anvil, 46--4 7 
At-rest earth pressure coefficient, 174 
Attenuation of elastic waves, 88-91 

B 

Backfill slope, effect on earth pressure, 
363 

Bandwidth tnethod, 40 
Bearing capacity: 

clay, 289-291 
factors, 284 
general shear failure, 285 
punching shear failure, 285 
sand,283-284,297,304,307 
strain rate for, 290-291 
variation with loading velocity, 

286---287 

Bedrock-like tnaterial, 322 
Bender eletnent, 104-105 
Bilinear idealization, 124-125 
Boussinesq probletn, dynatnic, 200 

C 

Calculation of foundation response: 
rocking vibration, 222-225 
sliding vibration, 228-231 
torsional vibration, 231-234 
vertical vibration, 213-218 

Characteristics of rock tnotion, 
322-324

Coefficient of: 
restitution, 47 
subgrade reaction, 12 

Cotnpaction, granular soil, 404-408 
Cone penetration resistance, 

liquefaction, 473-474, 479-481 
Contact pressure: 

flexible foundation, 203-204 
parabolic pressure distribution, 

203-204
rigid foundation, 203-204 

Correlation for: 
at-rest earth pressure coefficient, 174 
datnping ratio in clay, 184-186 
datnping ratio in gravel, 180-181 
datnping ratio in lightly cetnented 

sand, 190 
datnping ratio in sand, 176---177 
liquefaction, 459-461 
tnaxitnutn ground acceleration, 

462-467 
shear tnodulus in clay, 183-184 
shear tnodulus in gravel, 178-181 
shear tnodulus in lightly cetnented 

sand, 189-190 
shear tnodulus in sand, 173-177 
shear wave velocity, sand, 173-174 

Coupled rocking and sliding, 
foundation, 257-260 

Crest acceleration, etnbanktnent, 
550-554

Critical angle of incidence, 139 
Critical datnping, 24 
Critical horizontal acceleration, earth 

pressure, 358 
Critical void ratio, 427 
Cross-hole shooting, 164-165 
Cyclic tnobility, liquefaction, 436 
Cyclic plate load tests, 165-169 

shear tnodulus detertnination, 
168-169

spring constant determination, 
167-168

Cyclic shear strain, settletnent of sand, 
418-420

Cyclic sitnple shear tests, 121-125 
advantages of, 125 
typical results for liquefaction, 

445-447
Cyclic strength, clay, 130-132 
Cyclic torsional sitnple shear test, 

126---128 
Cyclic triaxial test, 128-132 

D 

Datnped natural frequency, definition 
of, 28 

Datnping, definition of, 23 
Datnping ratio: 

in clay, 184-185 
definition of, 24 
detertnination of, 38-40 
effect of stress cycles, 123-124 
in gravel, 181 
in lightly cetnented sand, 190 
in sand, 175-177 

Datnping ratio, foundation vibration: 
rocking, 224 
sliding, 229 
torsional, 231 
vertical, 213 

Dashpot coefficient, 23 
Dashpot coefficient, foundation 

vibration: 
rocking, 223 
sliding, 229 
torsional, 231 
vertical, 213 

Deep-focus earthquake, 315 
Defortnation of slope, 581-582 
Degree of freedotn, 10 
Depth factor, 285, 289 
Ditnensionless frequency, 203 
Ditnensionless tnass ratio: 

sliding vibration, 229 
torsional vibration, 231 
vertical vibration, 211 

Displacetnent function, 201, 209 
Displacetnent of Rayleigh waves, 

86---88 
Distortional wave, 76 
Double atnplitude, definition of, 15 
Duration, earthquake, 322 
Dynatnic Boussinesq probletn, 200 
Dynatnic force, subgrade, 33 
Dynatnic laboratory test: 

paratneters tneasured, 134 
range of applicability, 134 
relative quantities, 134 
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Index 

Dynamic triaxial test, liquefaction: 
procedure for, 431--433 
typical results for, 434--439 

E 

Earth pressure theory: 
Mononobe-Okabe solution, 

346-358
Earthquake: 

duration of, 322 
equivalent number of cycles, 

336-340
length of fault rupture during, 318 
local magnitude, 319 
magnitude of, 317-320 
modified Mercalli scale for, 31 7 
moment magnitude, 319 

Earthquake-induced slope 
deformation, 581-582 

Effective distance to causative fault, 
315 

Effective octahedral stress, 174 
Effective principal stress: 

for torsional shear test, 127-128 
Effectiveness, isolation, 275 
Elastic half-space solution, 200-209 
Elastic wave: 

attenuation of, 88-91 
reflection of, 134----13 7 
refraction of, 134----137 

Embedded foundation: 
amplitude of vibration, vertical, 

264 
damping ratio, 263, 266-268 
dashpot coefficient, 263-264, 

266-267
rocking vibration, 266-267 
sliding vibration, 264----266 
spring constant, 263-264, 

266-267
torsional vibration, 267-268 
vertical vibration, 260-264 

Energy transmission, machine 
foundation, 416 

End-bearing pile: 
definition of, 499 
natural frequency derivation for, 

499-501
Epicenter, 315 
Epicenter distance, 315 
Equation for stress waves: 

compression wave, 59-61 
Rayleigh wave, 80-86 
shear wave, 64----67 

Equation of motion, elastic medium, 
73-74

Equivalent radius, foundation 
vibration: 

rocking, 225 
sliding, 230 
torsional, 233 
vertical, 217 

F 

Fixed-free resonant column test, 108 
Flexible circular area, vibration of, 201 
Focal depth, 314 
Focus, earthquake, 314 
Footing vibration, comparison with 

theory, 236-240 
Forced vibration: 

definition of, 9 
of earth embankment, 545-547 
spring-mass system, 17-23 
steady state with viscous damping, 

30-33
Foundation subgrade: 

maximum force on, 22, 33 
minimum force on, 22 

Free vibration: 
definition of, 9 
of earth embankment, 542-545 
spring-mass system, 11-16 
with viscous damping, 23-28 

Freedom, degree of, 10 
Free-free resonant column test, 106-108 
Frequency of oscillation, definition 

of, 15 
Friction pile: 

G 

dashpot coefficient for, 505 
definition of, 499 
spring constant for, 505 
vertical vibration of, 503-512 

General shear failure, 285 
Geometric damping, 91 
Granular soil, compressibility of, 

404--408 
Graphical construction, active force, 

363-367
Gravel: 

damping ratio of, 178-181 
drain, 486--491 
shear modulus of, 178-181 

Gravity retaining wall: 
inertia factor, 377 
limited displacement of, 375-380 
thrust factor, 3 77 

Group pile, vertical vibration: 
amplitude of vibration, 511 
damped natural frequency, 511 
damping ratio for, 510 
dashpot coefficient for, 510 
spring constant for, 509 

H 

Halls' analog, 222 
High-speed machine, 217 
Homogeneous soil layer vibration, 

324----328 
Hooke's law, 58-59 
Horizontal layering: 

reflection survey, 150-152 
refraction survey, 137-143 

Hsieh's analog, 209-210 
Hydrodynamic effect, pore water, 

382-384
Hypocentric distance, 315 

I 

Inclined layering: 
reflection survey, 154----156 
refraction survey, 145-147 

Inertia factor, gravity wall, 377 
Inertia ratio, rocking vibration, 223 
Initial liquefaction: 

influence of confining pressure, 
439--440 

influence of overconsolidation 
ratio, 446 

influence of peak pulsating stress, 
441 

influence of relative density, 439 
influence of test condition, 446 
standard curves for, 444 

Intermediate focus earthquake, 
315 

Internal damping, 118-121 
Isolation: 

L 

active, 269-272 
by use of pile, 273-276 
effectiveness, 27 5 
passive, 269, 272-276 

Length of fault rupture, 318 
Lightly cemented sand: 

damping ratio for, 190 
shear modulus for, 188-190 

Limited displacement, gravity wall , 
375-380

Liquefaction: 
analysis, standard penetration 

resistance, 468--4 71 
correlation, cone penetration 

resistance, 473--474 
cyclic mobility, 436 
development of standard curves 

for, 446 
dynamic triaxial test for, 

431--433 
fundamentals of, 428--430 
influence of parameters on, 

439--442 
remedial action for mitigation of, 

486--491 
resistant stratum, 475 
simplified procedure using in situ 

index, 475--483 
threshold strain for, 474 
typical results for, 434--439 
zone of, 461--462 

Logarithmic decrement: 
definition of, 28 
in torsional vibration of sand, 

120-121
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Longitudinal elastic wave: 
in a bar, 59-60 
travel time method for, 101, 103 

Longitudinal stress wave velocity, 61 
Longitudinal vibration, short bar: 

fixed-fixed end condition, 69-70 
fixed-free end condition, 70-71 
free-free end condition, 68-69 

Low-speed machine, 218 
Lumped parameter, definition of, 9 
Lysmer's analog, 210-212 

M 

Machine foundation, settlement, 
413-418

Magnitude, earthquake, 317-320 
Mass ratio, 202 
Material damping, 91 
Maximum amplitude, rock motion, 

323-324
Maximum crest acceleration, 

embankment, 550-554 
Modified Mercalli scale, 318 
Moment magnitude scale, 319 
Mononobe-Okabe earth pressure 

theory, 351-352 
Multidirectional shaking, settlement, 

423-425
Multilayer soil, refraction survey, 

142-143

N 

Natural frequency, end-bearing pile, 
497-499

Nature of dynamic load, 1-5 
Number of stress cycles, equivalent, 

336---340 

0 

Overdamping, 24-25 

p 

Parameters measured, dynamic test, 135 
Passive isolation: 

definition of, 269 
by use of piles, 273-276 
by use of trenches, 272-273 

Passive pressure, 394-397 
Passive pressure, c----<f> soil, 398-400 
Pickup: 

acceleration, 42 
velocity, 41 

Plate load test: 
procedure for, 165-167 
shear modulus determination, 169 
spring constant determination, 

167 
subgrade modulus determination, 

168 
Point of application, active force: 

wall rotation about bottom, 
372-373

wall rotation about top, 373 
wall translation, 373 

Poisson's ratio, choice of, 244 
Pore water pressure: 

hydrodynamic effect on, 382-384 
rate of increase of, 447-449 

Pseudo-static analysis, slope: 
c-cp soil, 568-573, 575-578
conventional method of slices,

578,580-581 
in saturated clay, 562-567 
yield acceleration, 579 

Punching shear failure, 285 

Q 
Quasi-fixed base and free top resonant 

column, 113-114 

R 

Range of applicability, dynamic test, 
134 

Rapid load, shear strength, 96---99 
Rayleigh wave, 80-86 

displacement of, 86-88 
Reflection of elastic waves, end of 

bar, 64 
Reflection survey: 

horizontal layering, 150-152 
inclined layering, 154-156 

Refraction survey: 
horizontal layering, 137-143 
multilayer soil, 142-143 
three-layered soil medium, 

140-142
with inclined layering, 146-148 

Relative quality, laboratory 
measurement, 134 

Resonance condition, 19 
Resonant column test, 106---121 

determination of internal damping, 
118-121

fixed-free test, 108-112 
free-free test, 106---108 
for large strain amplitude, 

115-116
typical results from, 114-115 

Rock acceleration: 
maximum amplitude of, 323-324 
predominant period, 322-323 

Rock motion, characteristics of, 
322-324

Rocking vibration, foundation: 
amplitude of vibration, 224-225 
contact pressure distribution in, 222 
damping ratio, 224 
dashpot coefficient, 223 
Hall's analog for, 222 
inertia ratio, 223 
static spring constant for, 223 

Rocking vibration, pile, 519-523 
damping ratio, 520 
dashpot coefficient, group, 521 

Index 

dashpot coefficient, single, 520 
spring constant, group, 521 
spring constant, single, 519-520 

Rotating mass type excitation, 34-36 

s 

Seismic bearing capacity: 
edge of a granular slope, 309-310 
solution of Budhu and al-Kami, 

304-305
solution of Choudhury and Subba 

Rao, 307-308 
solution of Richards et al., 

297-303
Seismic survey: 

reflection, horizontal layering, 
151-152

reflection, inclined layering, 
154-156

refraction, horizontal layering, 
137-143

refraction, inclined layering, 
145-147

Settlement: 
of machine foundation, 413-418 
prediction for foundation, seismic 

loading, 303 
SH-wave, 135 
Shape factor, bearing capacity, 285 
Shallow-focus earthquake, 315 
Shear modulus: 

correlation with standard 
penetration resistance, 178 

effect of prestraining on, 116, 118 
for gravel, 178-181 
for large strain amplitude, 115-116 
for lightly cemented sand, 189-190 
from plate load test, 169 
variation with shear strain, 

115, 117 
Shear strength, rapid loading: 

sand, 98-99 
saturation clay, 96---98 

Shear wave: 
correlation for velocity, 173-174 
equation for, 76 
travel time method for, 103, 

104-106 
velocity, 67, 77 

Shearing strain, 58 
Short bar: 

longitudinal vibration of, 67-71 
torsional vibration of, 71-72 

Simple shear test, 121-125 
Single amplitude, definition of, 15 
Single degree of freedom system, 10 
Sliding vibration, foundation: 

amplitude of vibration, 230 
damping ratio, 229 
dashpot coefficient, 229 
mass ratio, 229 
static spring constant, 228 
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Index 

Sliding vibration, pile, 517-519 
dashpot coefficient, group, 517-518 
dashpot coefficient, single, 516 
spring constant, group, 517-518 
spring constant, single, 514 

Soil friction angle, effect on earth 
pressure, 363 

Spring constant: 
definition of, 11 
from plate load test, 167-168 

Spring-mass system: 
forced vibration, 17-22 
free vibration, 11-16 

Stability analysis, embankment: 
coefficient of acceleration, average 

values, 560-561 
fundamental concepts, 557-562 

Standard penetration resistance: 
correlation for shear modulus, 178 
correlations for shear wave velocity, 

165-166 
Static spring constant, foundation: 

rocking, 223,249 
sliding, 228, 252 
torsional, 231, 256 
vertical, 212, 246 

Steady state vibration: 
spectral analysis of surface wave, 

158-161
subsoil exploration, 157-158 
viscous damping, 30-33 

Strain, 57-58 
Strain rate: 

on bearing capacity, 290 
for clay, 96, 98 
for sand, 98-99 

Stress, 56--57 
Stress-strain relationship, bilinear 

idealization, 124-125 
Stress cycle, equivalent number, 

336-340
Stressed zone: 

velocity of particles in, 62--64 
Subgrade: 

modulus, 168 
reaction, coefficient of, 12 

Subsoil exploration: 
cross-hole shooting, 164-165 
shooting down the hole, 162-163 
shooting up the hole, 162 
spectral analysis of surface wave, 

158-161
steady state vibration, 157-158 

SY-wave, 135 

T 

Terminal dry unit weight, 406--407, 
409 

Three-layered medium, refraction 
survey, 140-142 

Threshold strain, liquefaction, 474 
Thrust factor, gravity wall, 377 
Torsional vibration, foundation: 

calculation for foundation 
response, 233 

damping ratio, 231 
dimensionless mass ratio, 231 
shear stress distribution, 232 
spring constant, 231, 256 

Torsional vibration, pile, 529-537 
dashpot coefficient, group, 

531,535 
dashpot coefficient, single, 531 
spring constant, group, 531, 534 
spring constant, single, 531 

Torsional wave in a bar, 64-67 
Torsional wave velocity, 67 
Torsional simple shear test, 126--128 

effective principal stress, 127-128 
Travel time method, 101, 103-106 
Triaxial test, cyclic, 128-132 

cyclic strength of clay, 130-132 
Two degrees of freedom: 

coupled translation and rotation, 
49-52

mass-spring system, 42-44 
Types of dynamic load, 1-5 
Typical results, resonant column test, 

114-115

u 

Ultimate bearing capacity: 
depth factor for, 285, 289 
in sand, 283 
shape factor for, 285, 289 

Ultimate residual settlement, 414 
Undamped natural frequency: 

definition of, 15 
of embankment, 543 

Underdamping, 24, 27 
Uniformly loaded flexible area, 

vibration of, 201-203 
Unit weight, terminal, 406--407, 409 

V 

Velocity of particle, stressed zone, 
62-64

Velocity pickup, 41 
Velocity spectra, 545 

Vertical vibration, foundation: 
amplitude at resonance, 214 
calculation of foundation response, 

213-217
damping ratio, 213 
dashpot coefficient, 213 
displacement functions, 207, 

209-210
effect of contact pressure 

distribution, 203-204 
effect of Poisson's ratio, 206 
elastic half-space solution, 

200-209
flexible circular foundation, 

202-203
Hsieh's analog, 209-210 
Lysmer's analog, 210-211 
resonant frequency, 213 
static spring constant, 212 
uniformly loaded flexible area, 201 

Vibration: 
forced, 9 
free, 9 
measuring instrument, 40-42 

Vibration of embedded foundation: 
amplitude of vibration, 264 
damping ratio, 263, 266--268 
dashpot coefficient, 262-264, 

266--267 
spring constant, 262-264, 266--267 

Vibration of soil, earthquake: 
homogeneous layer, 324-328 
layered, 328-332 

Viscoelastic waves in a bar, 92-93 

w 

Wall friction angle, effect of earth 
pressure, 363 

Wave velocity: 

y 

compression, 76 
compression in water, 79 
longitudinal, 61 
Rayleigh, 84 
shear, 76 
torsional, 67 

Yield strength, stability analysis, 
561,563 

z 

Zone of: 
initial liquefaction, 461-462 
isolation, passive, 272 
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